Real-Time IP Intelligence: Building Responsive Location-Aware Apps

Create responsive applications that leverage real-time IP intelligence for dynamic user experiences and security.

Real-Time IP Intelligence: Building Responsive Location-Aware Apps
September 12, 2025
32 min read
IP Geolocation

Real-Time IP Intelligence: Building Responsive Location-Aware Apps


Overview {#overview}


Real-time IP intelligence enables dynamic, location-aware applications that adapt instantly to user location changes. Building responsive systems requires optimized architectures and intelligent caching strategies.


Real-Time IP Intelligence Overview

Real-Time IP Intelligence Overview


Streaming Architecture {#streaming-architecture}


Caching Strategies {#caching-strategies}


Performance Metrics {#performance-metrics}


Real-Time Processing Engine {#real-time-processing}


// Production-ready real-time IP intelligence processing engine
interface IPIntelligenceEvent {
  ip: string
  timestamp: number
  eventType: 'location_update' | 'threat_detected' | 'behavior_anomaly' | 'reputation_change'
  confidence: number
  data: {
    geolocation?: GeolocationResult
    threatScore?: number
    reputationScore?: number
    behavioralFlags?: string[]
    metadata?: Record<string, any>
  }
  source: string
  priority: 'low' | 'medium' | 'high' | 'critical'
}

interface IPIntelligenceProfile {
  ip: string
  currentLocation?: GeolocationResult
  locationHistory: GeolocationResult[]
  threatScore: number
  reputationScore: number
  behavioralProfile: {
    patterns: string[]
    riskFactors: string[]
    lastActivity: number
    activityFrequency: number
  }
  alerts: Array<{
    type: string
    severity: string
    timestamp: number
    description: string
  }>
  lastUpdated: number
  confidence: number
}

interface StreamingConfig {
  batchSize: number
  flushInterval: number
  maxQueueSize: number
  retryAttempts: number
  backoffMultiplier: number
}

interface AnalyticsMetrics {
  processedEvents: number
  averageProcessingTime: number
  errorRate: number
  throughput: number // events per second
  queueSize: number
  memoryUsage: number
}

class RealTimeIPIntelligenceEngine {
  private eventQueue: IPIntelligenceEvent[] = []
  private profiles: Map<string, IPIntelligenceProfile> = new Map()
  private subscribers: Map<string, Array<(event: IPIntelligenceEvent) => void>> = new Map()
  private config: StreamingConfig
  private metrics: AnalyticsMetrics
  private isProcessing = false

  constructor(config: StreamingConfig) {
    this.config = config
    this.metrics = {
      processedEvents: 0,
      averageProcessingTime: 0,
      errorRate: 0,
      throughput: 0,
      queueSize: 0,
      memoryUsage: 0
    }

    this.startProcessingLoop()
    this.startMetricsCollection()
  }

  // Process incoming IP intelligence events
  async processEvent(event: IPIntelligenceEvent): Promise<void> {
    return new Promise((resolve) => {
      event.timestamp = Date.now()
      this.eventQueue.push(event)

      if (this.eventQueue.length >= this.config.batchSize) {
        this.flushQueue()
      }

      resolve()
    })
  }

  // Subscribe to real-time intelligence updates
  subscribe(eventType: string, callback: (event: IPIntelligenceEvent) => void): string {
    const subscriptionId = `sub_${Date.now()}_${Math.random()}`

    if (!this.subscribers.has(eventType)) {
      this.subscribers.set(eventType, [])
    }

    this.subscribers.get(eventType)!.push(callback)

    return subscriptionId
  }

  // Unsubscribe from intelligence updates
  unsubscribe(eventType: string, subscriptionId: string): void {
    const callbacks = this.subscribers.get(eventType)
    if (callbacks) {
      const index = callbacks.findIndex(cb => cb.name === subscriptionId)
      if (index > -1) {
        callbacks.splice(index, 1)
      }
    }
  }

  // Get current intelligence profile for IP
  getIntelligenceProfile(ip: string): IPIntelligenceProfile | null {
    return this.profiles.get(ip) || null
  }

  // Get real-time analytics metrics
  getMetrics(): AnalyticsMetrics {
    return { ...this.metrics }
  }

  private async flushQueue(): Promise<void> {
    if (this.eventQueue.length === 0 || this.isProcessing) return

    this.isProcessing = true
    const batch = this.eventQueue.splice(0, this.config.batchSize)

    try {
      await this.processBatch(batch)
      this.updateMetrics(batch.length, Date.now())
    } catch (error) {
      console.error('Error processing intelligence batch:', error)
      this.handleProcessingError(batch, error)
    } finally {
      this.isProcessing = false
    }
  }

  private async processBatch(events: IPIntelligenceEvent[]): Promise<void> {
    const startTime = Date.now()

    for (const event of events) {
      await this.processSingleEvent(event)
    }

    const processingTime = Date.now() - startTime
    this.updateAverageProcessingTime(processingTime)
  }

  private async processSingleEvent(event: IPIntelligenceEvent): Promise<void> {
    // Update or create intelligence profile
    let profile = this.profiles.get(event.ip)

    if (!profile) {
      profile = this.createNewProfile(event.ip)
      this.profiles.set(event.ip, profile)
    }

    // Process event based on type
    switch (event.eventType) {
      case 'location_update':
        await this.processLocationUpdate(event, profile)
        break
      case 'threat_detected':
        await this.processThreatDetection(event, profile)
        break
      case 'behavior_anomaly':
        await this.processBehavioralAnomaly(event, profile)
        break
      case 'reputation_change':
        await this.processReputationChange(event, profile)
        break
    }

    // Notify subscribers
    this.notifySubscribers(event)

    // Update profile timestamp
    profile.lastUpdated = Date.now()
  }

  private createNewProfile(ip: string): IPIntelligenceProfile {
    return {
      ip,
      locationHistory: [],
      threatScore: 50, // Neutral starting score
      reputationScore: 50,
      behavioralProfile: {
        patterns: [],
        riskFactors: [],
        lastActivity: Date.now(),
        activityFrequency: 0
      },
      alerts: [],
      lastUpdated: Date.now(),
      confidence: 0
    }
  }

  private async processLocationUpdate(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
    if (event.data.geolocation) {
      profile.currentLocation = event.data.geolocation
      profile.locationHistory.push(event.data.geolocation)

      // Keep only last 100 location records
      if (profile.locationHistory.length > 100) {
        profile.locationHistory = profile.locationHistory.slice(-100)
      }

      // Calculate location-based threat score
      profile.threatScore = this.calculateLocationThreatScore(event.data.geolocation, profile)
    }
  }

  private async processThreatDetection(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
    if (event.data.threatScore !== undefined) {
      profile.threatScore = Math.max(profile.threatScore, event.data.threatScore)

      // Add alert if threat score is high
      if (event.data.threatScore > 75) {
        profile.alerts.push({
          type: 'threat_detected',
          severity: event.data.threatScore > 90 ? 'critical' : 'high',
          timestamp: Date.now(),
          description: `Threat score ${event.data.threatScore} detected for IP ${event.ip}`
        })
      }
    }
  }

  private async processBehavioralAnomaly(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
    if (event.data.behavioralFlags) {
      profile.behavioralProfile.riskFactors.push(...event.data.behavioralFlags)
      profile.behavioralProfile.lastActivity = Date.now()

      // Update activity frequency
      const recentActivity = profile.locationHistory.filter(
        loc => Date.now() - loc.timestamp < 24 * 60 * 60 * 1000 // Last 24 hours
      )
      profile.behavioralProfile.activityFrequency = recentActivity.length

      // Generate alert for significant anomalies
      if (event.data.behavioralFlags.some(flag => flag.includes('suspicious'))) {
        profile.alerts.push({
          type: 'behavioral_anomaly',
          severity: 'medium',
          timestamp: Date.now(),
          description: `Behavioral anomaly detected: ${event.data.behavioralFlags.join(', ')}`
        })
      }
    }
  }

  private async processReputationChange(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
    if (event.data.reputationScore !== undefined) {
      profile.reputationScore = event.data.reputationScore

      // Add alert if reputation drops significantly
      const reputationDrop = profile.reputationScore - (profile.reputationScore + event.data.reputationScore) / 2
      if (reputationDrop < -20) {
        profile.alerts.push({
          type: 'reputation_change',
          severity: reputationDrop < -50 ? 'critical' : 'high',
          timestamp: Date.now(),
          description: `Reputation score dropped by ${Math.abs(reputationDrop)} points`
        })
      }
    }
  }

  private calculateLocationThreatScore(location: GeolocationResult, profile: IPIntelligenceProfile): number {
    let score = 50 // Base score

    // VPN/Proxy detection reduces score
    if (location.metadata?.isVpn || location.metadata?.isDatacenter) {
      score -= 20
    }

    // Corporate networks increase score
    if (location.metadata?.isCorporate) {
      score += 10
    }

    // High-risk countries
    const highRiskCountries = ['RU', 'CN', 'IR', 'KP', 'SY']
    if (highRiskCountries.includes(location.countryCode)) {
      score -= 15
    }

    // Recent location changes
    if (profile.locationHistory.length > 1) {
      const lastLocation = profile.locationHistory[profile.locationHistory.length - 2]
      const timeDiff = (Date.now() - lastLocation.timestamp) / (1000 * 3600) // hours
      const distance = this.calculateDistance(
        lastLocation.latitude || 0,
        lastLocation.longitude || 0,
        location.latitude || 0,
        location.longitude || 0
      )

      if (distance > 1000 && timeDiff < 2) { // 1000km in less than 2 hours
        score -= 25 // Suspicious rapid movement
      }
    }

    return Math.max(0, Math.min(100, score))
  }

  private calculateDistance(lat1: number, lng1: number, lat2: number, lng2: number): number {
    const R = 6371 // Earth's radius in km
    const dLat = this.toRadians(lat2 - lat1)
    const dLng = this.toRadians(lng2 - lng1)

    const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
              Math.cos(this.toRadians(lat1)) * Math.cos(this.toRadians(lat2)) *
              Math.sin(dLng / 2) * Math.sin(dLng / 2)

    const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a))
    return R * c
  }

  private toRadians(degrees: number): number {
    return degrees * (Math.PI / 180)
  }

  private notifySubscribers(event: IPIntelligenceEvent): void {
    const callbacks = this.subscribers.get(event.eventType) || []
    const profileCallbacks = this.subscribers.get('profile_update') || []

    callbacks.forEach(callback => {
      try {
        callback(event)
      } catch (error) {
        console.error('Error in event subscriber:', error)
      }
    })

    // Notify profile update subscribers
    profileCallbacks.forEach(callback => {
      try {
        callback(event)
      } catch (error) {
        console.error('Error in profile update subscriber:', error)
      }
    })
  }

  private updateMetrics(batchSize: number, processingTime: number): void {
    this.metrics.processedEvents += batchSize
    this.metrics.throughput = (batchSize / (processingTime / 1000)) // events per second
    this.metrics.queueSize = this.eventQueue.length

    // Update memory usage estimate
    this.metrics.memoryUsage = this.profiles.size * 0.5 + this.eventQueue.length * 0.1 // MB estimate
  }

  private updateAverageProcessingTime(processingTime: number): void {
    const alpha = 0.1 // Smoothing factor
    this.metrics.averageProcessingTime =
      this.metrics.averageProcessingTime * (1 - alpha) + processingTime * alpha
  }

  private handleProcessingError(batch: IPIntelligenceEvent[], error: any): void {
    this.metrics.errorRate = (this.metrics.errorRate + batch.length) / (this.metrics.processedEvents + batch.length)

    // Retry failed events with exponential backoff
    setTimeout(() => {
      batch.forEach(event => this.eventQueue.unshift(event))
    }, 1000 * Math.pow(2, this.config.retryAttempts))
  }

  private startProcessingLoop(): void {
    setInterval(async () => {
      if (this.eventQueue.length > 0 && !this.isProcessing) {
        await this.flushQueue()
      }
    }, this.config.flushInterval)
  }

  private startMetricsCollection(): void {
    // Collect system metrics every 30 seconds
    setInterval(() => {
      this.collectSystemMetrics()
    }, 30000)
  }

  private collectSystemMetrics(): void {
    // In production, this would collect actual system metrics
    // For now, we'll simulate some metrics
    const memoryUsage = process.memoryUsage()
    this.metrics.memoryUsage = Math.round(memoryUsage.heapUsed / 1024 / 1024) // MB
  }
}

// Integration with Express.js for real-time API
const intelligenceEngine = new RealTimeIPIntelligenceEngine({
  batchSize: 100,
  flushInterval: 1000, // 1 second
  maxQueueSize: 10000,
  retryAttempts: 3,
  backoffMultiplier: 2
})

// Middleware for automatic IP intelligence processing
const ipIntelligenceMiddleware = async (req: any, res: any, next: any) => {
  try {
    const clientIP = req.ip || req.connection.remoteAddress || req.socket.remoteAddress

    if (clientIP && !clientIP.includes('127.0.0.1') && !clientIP.includes('::1')) {
      // Get current intelligence profile
      const profile = intelligenceEngine.getIntelligenceProfile(clientIP)

      // Create location update event
      const locationEvent: IPIntelligenceEvent = {
        ip: clientIP,
        timestamp: Date.now(),
        eventType: 'location_update',
        confidence: 85,
        data: {
          geolocation: {
            ip: clientIP,
            country: 'United States',
            countryCode: 'US',
            region: 'California',
            city: 'San Francisco',
            latitude: 37.7749,
            longitude: -122.4194,
            accuracy: 'coordinates',
            confidence: 85,
            provider: 'premium_provider',
            cached: false,
            timestamp: Date.now()
          }
        },
        source: 'middleware',
        priority: 'medium'
      }

      // Process event asynchronously
      intelligenceEngine.processEvent(locationEvent).catch(console.error)

      // Add intelligence data to request
      req.ipIntelligence = {
        profile,
        currentLocation: locationEvent.data.geolocation,
        threatScore: profile?.threatScore || 50,
        reputationScore: profile?.reputationScore || 50
      }

      // Set security headers based on intelligence
      if (profile && profile.threatScore > 75) {
        res.set('X-Risk-Level', 'high')
        res.set('X-Threat-Score', profile.threatScore.toString())
      }
    }
  } catch (error) {
    console.error('IP Intelligence middleware error:', error)
    req.ipIntelligence = null
  }

  next()
}

// Real-time intelligence API endpoints
app.use('/api', ipIntelligenceMiddleware)

// Get current IP intelligence
app.get('/api/ip-intelligence/:ip', (req, res) => {
  const profile = intelligenceEngine.getIntelligenceProfile(req.params.ip)

  if (profile) {
    res.json({
      profile,
      metrics: intelligenceEngine.getMetrics(),
      timestamp: new Date().toISOString()
    })
  } else {
    res.status(404).json({
      error: 'IP intelligence profile not found',
      message: 'No intelligence data available for this IP address'
    })
  }
})

// Subscribe to real-time intelligence updates (WebSocket)
app.ws('/api/intelligence/stream', (ws: any) => {
  const subscriptionId = intelligenceEngine.subscribe('profile_update', (event) => {
    ws.send(JSON.stringify({
      type: 'intelligence_update',
      data: event,
      timestamp: new Date().toISOString()
    }))
  })

  ws.on('close', () => {
    intelligenceEngine.unsubscribe('profile_update', subscriptionId)
  })

  ws.on('message', (message: string) => {
    try {
      const data = JSON.parse(message)
      if (data.type === 'subscribe' && data.eventTypes) {
        data.eventTypes.forEach((eventType: string) => {
          intelligenceEngine.subscribe(eventType, (event) => {
            ws.send(JSON.stringify({
              type: 'event',
              eventType,
              data: event,
              timestamp: new Date().toISOString()
            }))
          })
        })
      }
    } catch (error) {
      console.error('WebSocket message error:', error)
    }
  })
})

// Real-time analytics dashboard data
app.get('/api/intelligence/analytics', (req, res) => {
  res.json({
    metrics: intelligenceEngine.getMetrics(),
    activeProfiles: intelligenceEngine['profiles'].size,
    queueSize: intelligenceEngine['eventQueue'].length,
    subscriptions: Array.from(intelligenceEngine['subscribers'].entries()).map(([eventType, callbacks]) => ({
      eventType,
      subscriberCount: callbacks.length
    })),
    timestamp: new Date().toISOString()
  })
})

// Health check with intelligence metrics
app.get('/health/intelligence', (req, res) => {
  const metrics = intelligenceEngine.getMetrics()

  res.json({
    status: metrics.errorRate < 0.01 ? 'healthy' : 'degraded',
    metrics,
    uptime: process.uptime(),
    timestamp: new Date().toISOString()
  })
})

console.log('Real-time IP intelligence engine initialized')

Streaming Analytics Pipeline {#streaming-analytics}


// Advanced streaming analytics for IP intelligence patterns
interface AnalyticsEvent {
  id: string
  timestamp: number
  eventType: 'pattern_detected' | 'trend_analysis' | 'anomaly_alert' | 'correlation_found'
  data: {
    pattern?: {
      type: string
      confidence: number
      duration: number
      affectedIPs: string[]
    }
    trend?: {
      metric: string
      direction: 'increasing' | 'decreasing' | 'stable'
      changeRate: number
      timeframe: number
    }
    anomaly?: {
      type: string
      severity: string
      affectedRegions: string[]
      duration: number
    }
    correlation?: {
      factors: string[]
      strength: number
      sampleSize: number
    }
  }
  metadata: Record<string, any>
}

interface StreamingAnalyticsConfig {
  windowSize: number // Time window in seconds
  slideInterval: number // How often to update analysis
  minPatternSupport: number // Minimum occurrences for pattern detection
  trendSensitivity: number // How sensitive to trend changes (0-1)
  anomalyThreshold: number // Standard deviations for anomaly detection
}

class IPIntelligenceAnalyticsPipeline {
  private eventBuffer: AnalyticsEvent[] = []
  private patternDetector: PatternDetector
  private trendAnalyzer: TrendAnalyzer
  private anomalyDetector: AnomalyDetector
  private correlationEngine: CorrelationEngine
  private config: StreamingAnalyticsConfig

  constructor(config: StreamingAnalyticsConfig) {
    this.config = config
    this.patternDetector = new PatternDetector(config)
    this.trendAnalyzer = new TrendAnalyzer(config)
    this.anomalyDetector = new AnomalyDetector(config)
    this.correlationEngine = new CorrelationEngine(config)

    this.startStreamingAnalysis()
  }

  // Process new analytics event
  async processAnalyticsEvent(event: AnalyticsEvent): Promise<AnalyticsEvent[]> {
    this.eventBuffer.push(event)

    // Keep buffer within window size
    const windowStart = Date.now() - (this.config.windowSize * 1000)
    this.eventBuffer = this.eventBuffer.filter(e => e.timestamp > windowStart)

    const insights: AnalyticsEvent[] = []

    // Run all analytics engines
    const patternInsights = await this.patternDetector.detectPatterns(this.eventBuffer)
    const trendInsights = await this.trendAnalyzer.analyzeTrends(this.eventBuffer)
    const anomalyInsights = await this.anomalyDetector.detectAnomalies(this.eventBuffer)
    const correlationInsights = await this.correlationEngine.findCorrelations(this.eventBuffer)

    insights.push(...patternInsights, ...trendInsights, ...anomalyInsights, ...correlationInsights)

    return insights
  }

  // Get current analytics state
  getAnalyticsState(): {
    bufferSize: number
    windowUtilization: number
    activePatterns: number
    recentTrends: number
    anomalyCount: number
  } {
    return {
      bufferSize: this.eventBuffer.length,
      windowUtilization: this.eventBuffer.length / 1000, // Assuming 1000 is max buffer
      activePatterns: this.patternDetector.getActivePatternCount(),
      recentTrends: this.trendAnalyzer.getActiveTrendCount(),
      anomalyCount: this.anomalyDetector.getAnomalyCount()
    }
  }

  private startStreamingAnalysis(): void {
    setInterval(async () => {
      if (this.eventBuffer.length > 0) {
        const insights = await this.processAnalyticsEvent({
          id: `analysis_${Date.now()}`,
          timestamp: Date.now(),
          eventType: 'trend_analysis',
          data: {},
          metadata: {}
        })

        // Emit insights to subscribers
        this.emitInsights(insights)
      }
    }, this.config.slideInterval * 1000)
  }

  private emitInsights(insights: AnalyticsEvent[]): void {
    // In production, this would emit to WebSocket connections, Kafka, etc.
    insights.forEach(insight => {
      console.log(`Analytics Insight [${insight.eventType}]: ${JSON.stringify(insight.data)}`)
    })
  }
}

class PatternDetector {
  private activePatterns: Map<string, any> = new Map()

  constructor(private config: StreamingAnalyticsConfig) {}

  async detectPatterns(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
    const insights: AnalyticsEvent[] = []
    const patterns = this.findFrequentPatterns(events)

    for (const pattern of patterns) {
      if (pattern.support >= this.config.minPatternSupport) {
        const patternInsight: AnalyticsEvent = {
          id: `pattern_${Date.now()}_${Math.random()}`,
          timestamp: Date.now(),
          eventType: 'pattern_detected',
          data: {
            pattern: {
              type: pattern.type,
              confidence: pattern.confidence,
              duration: pattern.duration,
              affectedIPs: pattern.ips
            }
          },
          metadata: { patternId: pattern.id }
        }

        insights.push(patternInsight)
        this.activePatterns.set(pattern.id, pattern)
      }
    }

    return insights
  }

  private findFrequentPatterns(events: AnalyticsEvent[]): Array<{
    id: string
    type: string
    support: number
    confidence: number
    duration: number
    ips: string[]
  }> {
    // Simplified pattern detection - in production, use more sophisticated algorithms
    const patterns = []

    // Detect location change patterns
    const locationChanges = events.filter(e => e.data.pattern?.type === 'location_change')
    if (locationChanges.length >= 3) {
      patterns.push({
        id: 'rapid_location_changes',
        type: 'location_change',
        support: locationChanges.length,
        confidence: 0.8,
        duration: 300, // 5 minutes
        ips: [...new Set(locationChanges.map(e => e.metadata.ip))]
      })
    }

    // Detect threat spike patterns
    const threatEvents = events.filter(e => e.data.trend?.metric === 'threat_score')
    if (threatEvents.length >= 5) {
      patterns.push({
        id: 'threat_spike',
        type: 'threat_increase',
        support: threatEvents.length,
        confidence: 0.9,
        duration: 180, // 3 minutes
        ips: [...new Set(threatEvents.map(e => e.metadata.ip))]
      })
    }

    return patterns
  }

  getActivePatternCount(): number {
    return this.activePatterns.size
  }
}

class TrendAnalyzer {
  private trendHistory: Map<string, number[]> = new Map()

  constructor(private config: StreamingAnalyticsConfig) {}

  async analyzeTrends(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
    const insights: AnalyticsEvent[] = []

    // Analyze threat score trends
    const threatTrends = this.analyzeMetricTrend(events, 'threat_score')
    threatTrends.forEach(trend => {
      if (Math.abs(trend.changeRate) > this.config.trendSensitivity) {
        insights.push({
          id: `trend_${Date.now()}_${Math.random()}`,
          timestamp: Date.now(),
          eventType: 'trend_analysis',
          data: { trend },
          metadata: { metric: 'threat_score' }
        })
      }
    })

    // Analyze activity frequency trends
    const activityTrends = this.analyzeMetricTrend(events, 'activity_frequency')
    activityTrends.forEach(trend => {
      if (Math.abs(trend.changeRate) > this.config.trendSensitivity) {
        insights.push({
          id: `trend_${Date.now()}_${Math.random()}`,
          timestamp: Date.now(),
          eventType: 'trend_analysis',
          data: { trend },
          metadata: { metric: 'activity_frequency' }
        })
      }
    })

    return insights
  }

  private analyzeMetricTrend(events: AnalyticsEvent[], metric: string): Array<{
    metric: string
    direction: 'increasing' | 'decreasing' | 'stable'
    changeRate: number
    timeframe: number
  }> {
    const metricEvents = events.filter(e => e.data.trend?.metric === metric)

    if (metricEvents.length < 3) return []

    // Simple linear regression for trend detection
    const values = metricEvents.map(e => e.data.trend!.changeRate)
    const trend = this.calculateTrend(values)

    return [{
      metric,
      direction: trend > 0.1 ? 'increasing' : trend < -0.1 ? 'decreasing' : 'stable',
      changeRate: trend,
      timeframe: this.config.windowSize
    }]
  }

  private calculateTrend(values: number[]): number {
    if (values.length < 2) return 0

    let sumX = 0, sumY = 0, sumXY = 0, sumXX = 0
    const n = values.length

    for (let i = 0; i < n; i++) {
      sumX += i
      sumY += values[i]
      sumXY += i * values[i]
      sumXX += i * i
    }

    const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX)
    return slope
  }

  getActiveTrendCount(): number {
    return this.trendHistory.size
  }
}

class AnomalyDetector {
  private baselineStats: Map<string, { mean: number; std: number }> = new Map()
  private anomalyCount = 0

  constructor(private config: StreamingAnalyticsConfig) {}

  async detectAnomalies(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
    const insights: AnalyticsEvent[] = []

    // Detect threat score anomalies
    const threatAnomalies = this.detectMetricAnomalies(events, 'threat_score')
    threatAnomalies.forEach(anomaly => {
      insights.push({
        id: `anomaly_${Date.now()}_${Math.random()}`,
        timestamp: Date.now(),
        eventType: 'anomaly_alert',
        data: { anomaly },
        metadata: { metric: 'threat_score' }
      })
      this.anomalyCount++
    })

    // Detect activity anomalies
    const activityAnomalies = this.detectMetricAnomalies(events, 'activity_frequency')
    activityAnomalies.forEach(anomaly => {
      insights.push({
        id: `anomaly_${Date.now()}_${Math.random()}`,
        timestamp: Date.now(),
        eventType: 'anomaly_alert',
        data: { anomaly },
        metadata: { metric: 'activity_frequency' }
      })
      this.anomalyCount++
    })

    return insights
  }

  private detectMetricAnomalies(events: AnalyticsEvent[], metric: string): Array<{
    type: string
    severity: string
    affectedRegions: string[]
    duration: number
  }> {
    const metricEvents = events.filter(e => e.metadata.metric === metric)
    const values = metricEvents.map(e => e.data.anomaly?.severity === 'high' ? 1 : 0)

    if (values.length < 10) return []

    const mean = values.reduce((a, b) => a + b, 0) / values.length
    const variance = values.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / values.length
    const std = Math.sqrt(variance)

    // Update baseline statistics
    this.baselineStats.set(metric, { mean, std })

    const anomalies = []
    const currentValue = values[values.length - 1]

    if (Math.abs(currentValue - mean) > this.config.anomalyThreshold * std) {
      anomalies.push({
        type: `${metric}_spike`,
        severity: currentValue > mean + 2 * std ? 'critical' : 'high',
        affectedRegions: ['global'], // In production, derive from events
        duration: 60 // 1 minute
      })
    }

    return anomalies
  }

  getAnomalyCount(): number {
    return this.anomalyCount
  }
}

class CorrelationEngine {
  constructor(private config: StreamingAnalyticsConfig) {}

  async findCorrelations(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
    const insights: AnalyticsEvent[] = []

    // Find correlations between threat scores and geographic regions
    const geoThreatCorrelations = this.findGeographicCorrelations(events)
    geoThreatCorrelations.forEach(correlation => {
      insights.push({
        id: `correlation_${Date.now()}_${Math.random()}`,
        timestamp: Date.now(),
        eventType: 'correlation_found',
        data: { correlation },
        metadata: { correlationType: 'geo_threat' }
      })
    })

    // Find correlations between time of day and activity patterns
    const temporalCorrelations = this.findTemporalCorrelations(events)
    temporalCorrelations.forEach(correlation => {
      insights.push({
        id: `correlation_${Date.now()}_${Math.random()}`,
        timestamp: Date.now(),
        eventType: 'correlation_found',
        data: { correlation },
        metadata: { correlationType: 'temporal_activity' }
      })
    })

    return insights
  }

  private findGeographicCorrelations(events: AnalyticsEvent[]): Array<{
    factors: string[]
    strength: number
    sampleSize: number
  }> {
    // Simplified correlation detection
    const correlations = []

    // Example: High threat scores in specific regions
    const regionThreats = new Map<string, number[]>()

    events.forEach(event => {
      if (event.metadata.region && event.data.threatScore) {
        if (!regionThreats.has(event.metadata.region)) {
          regionThreats.set(event.metadata.region, [])
        }
        regionThreats.get(event.metadata.region)!.push(event.data.threatScore)
      }
    })

    // Find regions with consistently high threat scores
    for (const [region, scores] of regionThreats) {
      if (scores.length >= 5) {
        const avgScore = scores.reduce((a, b) => a + b, 0) / scores.length
        if (avgScore > 75) {
          correlations.push({
            factors: ['geographic_region', 'threat_score'],
            strength: Math.min(1.0, avgScore / 100),
            sampleSize: scores.length
          })
        }
      }
    }

    return correlations
  }

  private findTemporalCorrelations(events: AnalyticsEvent[]): Array<{
    factors: string[]
    strength: number
    sampleSize: number
  }> {
    // Find time-based patterns in activity
    const hourActivity = new Map<number, number>()

    events.forEach(event => {
      if (event.metadata.hour !== undefined) {
        hourActivity.set(event.metadata.hour, (hourActivity.get(event.metadata.hour) || 0) + 1)
      }
    })

    // Detect peak hours
    let maxActivity = 0
    let peakHour = 0

    for (const [hour, count] of hourActivity) {
      if (count > maxActivity) {
        maxActivity = count
        peakHour = hour
      }
    }

    if (maxActivity > 10) { // Significant peak
      return [{
        factors: ['time_of_day', 'activity_level'],
        strength: maxActivity / events.length,
        sampleSize: events.length
      }]
    }

    return []
  }
}

// Initialize analytics pipeline
const analyticsConfig: StreamingAnalyticsConfig = {
  windowSize: 300, // 5 minutes
  slideInterval: 60, // Update every minute
  minPatternSupport: 3,
  trendSensitivity: 0.2,
  anomalyThreshold: 2.0
}

const analyticsPipeline = new IPIntelligenceAnalyticsPipeline(analyticsConfig)

// Analytics API endpoints
app.get('/api/analytics/insights', async (req, res) => {
  const state = analyticsPipeline.getAnalyticsState()

  res.json({
    state,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/analytics/patterns', async (req, res) => {
  const patterns = analyticsPipeline['patternDetector'].getActivePatternCount()

  res.json({
    activePatterns: patterns,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/analytics/trends', async (req, res) => {
  const trends = analyticsPipeline['trendAnalyzer'].getActiveTrendCount()

  res.json({
    activeTrends: trends,
    timestamp: new Date().toISOString()
  })
})

console.log('Streaming analytics pipeline initialized')

Performance Monitoring Dashboard {#monitoring-dashboard}


// Real-time performance monitoring for IP intelligence systems
interface PerformanceMetric {
  name: string
  value: number
  unit: string
  timestamp: number
  tags: Record<string, string>
}

interface SystemHealth {
  status: 'healthy' | 'degraded' | 'unhealthy'
  cpuUsage: number
  memoryUsage: number
  diskUsage: number
  networkIO: { inbound: number; outbound: number }
  activeConnections: number
  errorRate: number
  responseTime: number
}

interface AlertRule {
  id: string
  name: string
  condition: {
    metric: string
    operator: '>' | '<' | '>=' | '<=' | '=='
    threshold: number
    duration: number // seconds - how long condition must be true
  }
  severity: 'low' | 'medium' | 'high' | 'critical'
  message: string
  cooldown: number // seconds between alerts
}

class PerformanceMonitor {
  private metrics: Map<string, PerformanceMetric[]> = new Map()
  private alertRules: AlertRule[] = []
  private activeAlerts: Map<string, { alertId: string; startTime: number }> = new Map()
  private subscribers: Array<(metric: PerformanceMetric) => void> = []

  constructor() {
    this.initializeDefaultAlertRules()
    this.startMetricsCollection()
  }

  // Record a performance metric
  recordMetric(name: string, value: number, unit: string, tags: Record<string, string> = {}): void {
    const metric: PerformanceMetric = {
      name,
      value,
      unit,
      timestamp: Date.now(),
      tags
    }

    if (!this.metrics.has(name)) {
      this.metrics.set(name, [])
    }

    const metricHistory = this.metrics.get(name)!
    metricHistory.push(metric)

    // Keep only last 1000 metrics per type
    if (metricHistory.length > 1000) {
      metricHistory.splice(0, metricHistory.length - 1000)
    }

    // Notify subscribers
    this.subscribers.forEach(callback => {
      try {
        callback(metric)
      } catch (error) {
        console.error('Error in performance metric subscriber:', error)
      }
    })

    // Check alert conditions
    this.checkAlertConditions(metric)
  }

  // Subscribe to real-time performance metrics
  subscribe(callback: (metric: PerformanceMetric) => void): () => void {
    this.subscribers.push(callback)

    // Return unsubscribe function
    return () => {
      const index = this.subscribers.indexOf(callback)
      if (index > -1) {
        this.subscribers.splice(index, 1)
      }
    }
  }

  // Get current system health
  getSystemHealth(): SystemHealth {
    const cpuMetric = this.getLatestMetric('cpu_usage')
    const memoryMetric = this.getLatestMetric('memory_usage')
    const diskMetric = this.getLatestMetric('disk_usage')
    const networkMetrics = this.getNetworkMetrics()
    const errorRate = this.getLatestMetric('error_rate')?.value || 0
    const responseTime = this.getLatestMetric('response_time')?.value || 0

    let status: SystemHealth['status'] = 'healthy'
    if (cpuMetric && cpuMetric.value > 80) status = 'degraded'
    if (memoryMetric && memoryMetric.value > 90) status = 'unhealthy'
    if (errorRate > 0.05) status = 'unhealthy'

    return {
      status,
      cpuUsage: cpuMetric?.value || 0,
      memoryUsage: memoryMetric?.value || 0,
      diskUsage: diskMetric?.value || 0,
      networkIO: networkMetrics,
      activeConnections: this.getLatestMetric('active_connections')?.value || 0,
      errorRate,
      responseTime
    }
  }

  // Get metrics for a specific time range
  getMetricsInRange(name: string, startTime: number, endTime: number): PerformanceMetric[] {
    const metricHistory = this.metrics.get(name) || []
    return metricHistory.filter(m => m.timestamp >= startTime && m.timestamp <= endTime)
  }

  // Get aggregated metrics (average, min, max, etc.)
  getAggregatedMetrics(name: string, timeframe: number = 300000): {
    average: number
    min: number
    max: number
    count: number
    latest: number
  } {
    const cutoff = Date.now() - timeframe
    const relevantMetrics = this.metrics.get(name)?.filter(m => m.timestamp > cutoff) || []

    if (relevantMetrics.length === 0) {
      return { average: 0, min: 0, max: 0, count: 0, latest: 0 }
    }

    const values = relevantMetrics.map(m => m.value)
    const latest = values[values.length - 1]

    return {
      average: values.reduce((a, b) => a + b, 0) / values.length,
      min: Math.min(...values),
      max: Math.max(...values),
      count: values.length,
      latest
    }
  }

  private getLatestMetric(name: string): PerformanceMetric | null {
    const metricHistory = this.metrics.get(name)
    return metricHistory && metricHistory.length > 0 ? metricHistory[metricHistory.length - 1] : null
  }

  private getNetworkMetrics(): { inbound: number; outbound: number } {
    const inbound = this.getLatestMetric('network_inbound')?.value || 0
    const outbound = this.getLatestMetric('network_outbound')?.value || 0
    return { inbound, outbound }
  }

  private checkAlertConditions(metric: PerformanceMetric): void {
    for (const rule of this.alertRules) {
      if (metric.name === rule.condition.metric) {
        const conditionMet = this.evaluateCondition(metric.value, rule.condition)

        if (conditionMet) {
          const activeAlert = this.activeAlerts.get(rule.id)

          if (!activeAlert || Date.now() - activeAlert.startTime > rule.cooldown * 1000) {
            this.triggerAlert(rule, metric)
          }
        } else {
          // Clear active alert if condition no longer met
          if (this.activeAlerts.has(rule.id)) {
            this.activeAlerts.delete(rule.id)
          }
        }
      }
    }
  }

  private evaluateCondition(value: number, condition: AlertRule['condition']): boolean {
    switch (condition.operator) {
      case '>': return value > condition.threshold
      case '<': return value < condition.threshold
      case '>=': return value >= condition.threshold
      case '<=': return value <= condition.threshold
      case '==': return Math.abs(value - condition.threshold) < 0.001
      default: return false
    }
  }

  private triggerAlert(rule: AlertRule, metric: PerformanceMetric): void {
    const alert = {
      alertId: rule.id,
      startTime: Date.now()
    }

    this.activeAlerts.set(rule.id, alert)

    // In production, this would send notifications, log to external systems, etc.
    console.warn(`🚨 ALERT [${rule.severity.toUpperCase()}]: ${rule.message}`)
    console.warn(`   Metric: ${metric.name} = ${metric.value}${metric.unit}`)
    console.warn(`   Threshold: ${rule.condition.metric} ${rule.condition.operator} ${rule.condition.threshold}`)
  }

  private initializeDefaultAlertRules(): void {
    this.alertRules = [
      {
        id: 'high_cpu',
        name: 'High CPU Usage',
        condition: {
          metric: 'cpu_usage',
          operator: '>',
          threshold: 80,
          duration: 300 // 5 minutes
        },
        severity: 'high',
        message: 'CPU usage has exceeded 80% for more than 5 minutes',
        cooldown: 1800 // 30 minutes
      },
      {
        id: 'high_memory',
        name: 'High Memory Usage',
        condition: {
          metric: 'memory_usage',
          operator: '>',
          threshold: 85,
          duration: 60 // 1 minute
        },
        severity: 'critical',
        message: 'Memory usage has exceeded 85%',
        cooldown: 600 // 10 minutes
      },
      {
        id: 'high_error_rate',
        name: 'High Error Rate',
        condition: {
          metric: 'error_rate',
          operator: '>',
          threshold: 0.05, // 5%
          duration: 180 // 3 minutes
        },
        severity: 'medium',
        message: 'Error rate has exceeded 5% for more than 3 minutes',
        cooldown: 900 // 15 minutes
      },
      {
        id: 'slow_response',
        name: 'Slow Response Time',
        condition: {
          metric: 'response_time',
          operator: '>',
          threshold: 2000, // 2 seconds
          duration: 60 // 1 minute
        },
        severity: 'medium',
        message: 'Average response time has exceeded 2 seconds',
        cooldown: 300 // 5 minutes
      }
    ]
  }

  private startMetricsCollection(): void {
    // Collect system metrics every 10 seconds
    setInterval(() => {
      this.collectSystemMetrics()
    }, 10000)

    // Collect application metrics every 30 seconds
    setInterval(() => {
      this.collectApplicationMetrics()
    }, 30000)
  }

  private collectSystemMetrics(): void {
    // In production, use system monitoring tools (e.g., os-utils, systeminformation)
    // For demo, we'll simulate metrics
    const cpuUsage = Math.random() * 100
    const memoryUsage = Math.random() * 100
    const diskUsage = Math.random() * 100

    this.recordMetric('cpu_usage', cpuUsage, '%', { source: 'system' })
    this.recordMetric('memory_usage', memoryUsage, '%', { source: 'system' })
    this.recordMetric('disk_usage', diskUsage, '%', { source: 'system' })

    // Network I/O (simulated)
    this.recordMetric('network_inbound', Math.random() * 1000, 'KB/s', { source: 'system' })
    this.recordMetric('network_outbound', Math.random() * 500, 'KB/s', { source: 'system' })
  }

  private collectApplicationMetrics(): void {
    // Collect IP intelligence specific metrics
    if (intelligenceEngine) {
      const metrics = intelligenceEngine.getMetrics()

      this.recordMetric('processed_events', metrics.processedEvents, 'count', { source: 'application' })
      this.recordMetric('average_processing_time', metrics.averageProcessingTime, 'ms', { source: 'application' })
      this.recordMetric('error_rate', metrics.errorRate, 'ratio', { source: 'application' })
      this.recordMetric('throughput', metrics.throughput, 'events/sec', { source: 'application' })
      this.recordMetric('queue_size', metrics.queueSize, 'count', { source: 'application' })
      this.recordMetric('memory_usage', metrics.memoryUsage, 'MB', { source: 'application' })
    }

    if (analyticsPipeline) {
      const state = analyticsPipeline.getAnalyticsState()

      this.recordMetric('buffer_size', state.bufferSize, 'count', { source: 'analytics' })
      this.recordMetric('window_utilization', state.windowUtilization, 'ratio', { source: 'analytics' })
      this.recordMetric('active_patterns', state.activePatterns, 'count', { source: 'analytics' })
      this.recordMetric('recent_trends', state.recentTrends, 'count', { source: 'analytics' })
      this.recordMetric('anomaly_count', state.anomalyCount, 'count', { source: 'analytics' })
    }
  }
}

// Initialize performance monitoring
const performanceMonitor = new PerformanceMonitor()

// Real-time performance dashboard API
app.get('/api/performance/health', (req, res) => {
  const health = performanceMonitor.getSystemHealth()

  res.json({
    health,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/performance/metrics/:name', (req, res) => {
  const timeframe = parseInt(req.query.timeframe as string) || 300000 // 5 minutes default
  const metrics = performanceMonitor.getAggregatedMetrics(req.params.name, timeframe)

  res.json({
    metrics,
    timeframe,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/performance/metrics/:name/history', (req, res) => {
  const startTime = parseInt(req.query.start as string) || Date.now() - 3600000 // 1 hour ago
  const endTime = parseInt(req.query.end as string) || Date.now()
  const metrics = performanceMonitor.getMetricsInRange(req.params.name, startTime, endTime)

  res.json({
    metrics: metrics.map(m => ({ value: m.value, timestamp: m.timestamp })),
    count: metrics.length,
    timestamp: new Date().toISOString()
  })
})

// WebSocket endpoint for real-time performance metrics
app.ws('/api/performance/stream', (ws: any) => {
  const unsubscribe = performanceMonitor.subscribe((metric) => {
    ws.send(JSON.stringify({
      type: 'performance_metric',
      data: metric,
      timestamp: new Date().toISOString()
    }))
  })

  ws.on('close', () => {
    unsubscribe()
  })
})

// Alert management endpoints
app.get('/api/performance/alerts', (req, res) => {
  const activeAlerts = Array.from(performanceMonitor['activeAlerts'].entries()).map(([ruleId, alert]) => {
    const rule = performanceMonitor['alertRules'].find(r => r.id === ruleId)
    return {
      ruleId,
      ruleName: rule?.name,
      severity: rule?.severity,
      message: rule?.message,
      startTime: alert.startTime,
      duration: Date.now() - alert.startTime
    }
  })

  res.json({
    activeAlerts,
    totalActive: activeAlerts.length,
    timestamp: new Date().toISOString()
  })
})

console.log('Performance monitoring dashboard initialized')

Implementation Challenges {#implementation-challenges}


Building real-time IP intelligence systems presents several technical and operational challenges that require careful consideration.


Scalability Challenges


High-Volume Processing

  • Handling millions of IP lookups per second
  • Managing memory usage for large IP databases
  • Balancing accuracy vs. performance trade-offs

Geographic Distribution

  • Minimizing latency for global users
  • Managing data sovereignty requirements
  • Handling regional IP allocation changes

Data Quality Challenges


Accuracy vs. Speed

  • Real-time updates vs. data freshness
  • Multiple data source reconciliation
  • Handling conflicting geolocation results

Edge Cases

  • Mobile IP addresses and carrier NAT
  • VPN and proxy detection accuracy
  • IPv6 adoption and dual-stack environments

Optimization Techniques {#optimization-techniques}


Effective optimization requires understanding performance bottlenecks and implementing targeted improvements.


Caching Optimization


interface CacheStrategy {
  level: 'L1' | 'L2' | 'L3'
  ttl: number
  maxSize: number
  evictionPolicy: 'LRU' | 'LFU' | 'TTL'
}

class IntelligentCacheManager {
  private caches: Map<string, CacheStrategy> = new Map()
  
  optimizeCacheStrategy(ipPattern: string, accessFrequency: number): CacheStrategy {
    if (accessFrequency > 1000) {
      return {
        level: 'L1',
        ttl: 3600, // 1 hour
        maxSize: 1000000,
        evictionPolicy: 'LRU'
      }
    } else if (accessFrequency > 100) {
      return {
        level: 'L2', 
        ttl: 1800, // 30 minutes
        maxSize: 100000,
        evictionPolicy: 'LFU'
      }
    } else {
      return {
        level: 'L3',
        ttl: 300, // 5 minutes
        maxSize: 10000,
        evictionPolicy: 'TTL'
      }
    }
  }
}

Performance Tuning


Database Optimization

  • Indexing strategies for IP ranges
  • Query optimization for geolocation lookups
  • Connection pooling and caching

Network Optimization

  • CDN integration for static data
  • Compression for API responses
  • HTTP/2 and WebSocket optimization

Memory Management

  • Efficient data structures for IP ranges
  • Garbage collection tuning
  • Memory-mapped files for large datasets

Conclusion {#conclusion}


Real-time IP intelligence systems require sophisticated architecture combining streaming data processing, intelligent caching, and comprehensive monitoring. Success depends on balancing accuracy, performance, and scalability while maintaining low latency and high availability.


Key success factors include implementing efficient caching strategies, optimizing data structures for IP lookups, maintaining comprehensive performance monitoring, and continuously adapting to changing network topologies and user patterns.


Build responsive, location-aware applications with our real-time IP intelligence APIs, designed for enterprise-scale performance and global coverage.

Tags:real-time-intelligenceresponsive-appsdynamic-experiencesperformance