Real-Time IP Intelligence: Building Responsive Location-Aware Apps
Create responsive applications that leverage real-time IP intelligence for dynamic user experiences and security.
Table of Contents
Table of Contents
Real-Time IP Intelligence: Building Responsive Location-Aware Apps
Overview {#overview}
Real-time IP intelligence enables dynamic, location-aware applications that adapt instantly to user location changes. Building responsive systems requires optimized architectures and intelligent caching strategies.
Real-Time IP Intelligence Overview
Streaming Architecture {#streaming-architecture}
Caching Strategies {#caching-strategies}
Performance Metrics {#performance-metrics}
Real-Time Processing Engine {#real-time-processing}
// Production-ready real-time IP intelligence processing engine
interface IPIntelligenceEvent {
ip: string
timestamp: number
eventType: 'location_update' | 'threat_detected' | 'behavior_anomaly' | 'reputation_change'
confidence: number
data: {
geolocation?: GeolocationResult
threatScore?: number
reputationScore?: number
behavioralFlags?: string[]
metadata?: Record<string, any>
}
source: string
priority: 'low' | 'medium' | 'high' | 'critical'
}
interface IPIntelligenceProfile {
ip: string
currentLocation?: GeolocationResult
locationHistory: GeolocationResult[]
threatScore: number
reputationScore: number
behavioralProfile: {
patterns: string[]
riskFactors: string[]
lastActivity: number
activityFrequency: number
}
alerts: Array<{
type: string
severity: string
timestamp: number
description: string
}>
lastUpdated: number
confidence: number
}
interface StreamingConfig {
batchSize: number
flushInterval: number
maxQueueSize: number
retryAttempts: number
backoffMultiplier: number
}
interface AnalyticsMetrics {
processedEvents: number
averageProcessingTime: number
errorRate: number
throughput: number // events per second
queueSize: number
memoryUsage: number
}
class RealTimeIPIntelligenceEngine {
private eventQueue: IPIntelligenceEvent[] = []
private profiles: Map<string, IPIntelligenceProfile> = new Map()
private subscribers: Map<string, Array<(event: IPIntelligenceEvent) => void>> = new Map()
private config: StreamingConfig
private metrics: AnalyticsMetrics
private isProcessing = false
constructor(config: StreamingConfig) {
this.config = config
this.metrics = {
processedEvents: 0,
averageProcessingTime: 0,
errorRate: 0,
throughput: 0,
queueSize: 0,
memoryUsage: 0
}
this.startProcessingLoop()
this.startMetricsCollection()
}
// Process incoming IP intelligence events
async processEvent(event: IPIntelligenceEvent): Promise<void> {
return new Promise((resolve) => {
event.timestamp = Date.now()
this.eventQueue.push(event)
if (this.eventQueue.length >= this.config.batchSize) {
this.flushQueue()
}
resolve()
})
}
// Subscribe to real-time intelligence updates
subscribe(eventType: string, callback: (event: IPIntelligenceEvent) => void): string {
const subscriptionId = `sub_${Date.now()}_${Math.random()}`
if (!this.subscribers.has(eventType)) {
this.subscribers.set(eventType, [])
}
this.subscribers.get(eventType)!.push(callback)
return subscriptionId
}
// Unsubscribe from intelligence updates
unsubscribe(eventType: string, subscriptionId: string): void {
const callbacks = this.subscribers.get(eventType)
if (callbacks) {
const index = callbacks.findIndex(cb => cb.name === subscriptionId)
if (index > -1) {
callbacks.splice(index, 1)
}
}
}
// Get current intelligence profile for IP
getIntelligenceProfile(ip: string): IPIntelligenceProfile | null {
return this.profiles.get(ip) || null
}
// Get real-time analytics metrics
getMetrics(): AnalyticsMetrics {
return { ...this.metrics }
}
private async flushQueue(): Promise<void> {
if (this.eventQueue.length === 0 || this.isProcessing) return
this.isProcessing = true
const batch = this.eventQueue.splice(0, this.config.batchSize)
try {
await this.processBatch(batch)
this.updateMetrics(batch.length, Date.now())
} catch (error) {
console.error('Error processing intelligence batch:', error)
this.handleProcessingError(batch, error)
} finally {
this.isProcessing = false
}
}
private async processBatch(events: IPIntelligenceEvent[]): Promise<void> {
const startTime = Date.now()
for (const event of events) {
await this.processSingleEvent(event)
}
const processingTime = Date.now() - startTime
this.updateAverageProcessingTime(processingTime)
}
private async processSingleEvent(event: IPIntelligenceEvent): Promise<void> {
// Update or create intelligence profile
let profile = this.profiles.get(event.ip)
if (!profile) {
profile = this.createNewProfile(event.ip)
this.profiles.set(event.ip, profile)
}
// Process event based on type
switch (event.eventType) {
case 'location_update':
await this.processLocationUpdate(event, profile)
break
case 'threat_detected':
await this.processThreatDetection(event, profile)
break
case 'behavior_anomaly':
await this.processBehavioralAnomaly(event, profile)
break
case 'reputation_change':
await this.processReputationChange(event, profile)
break
}
// Notify subscribers
this.notifySubscribers(event)
// Update profile timestamp
profile.lastUpdated = Date.now()
}
private createNewProfile(ip: string): IPIntelligenceProfile {
return {
ip,
locationHistory: [],
threatScore: 50, // Neutral starting score
reputationScore: 50,
behavioralProfile: {
patterns: [],
riskFactors: [],
lastActivity: Date.now(),
activityFrequency: 0
},
alerts: [],
lastUpdated: Date.now(),
confidence: 0
}
}
private async processLocationUpdate(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
if (event.data.geolocation) {
profile.currentLocation = event.data.geolocation
profile.locationHistory.push(event.data.geolocation)
// Keep only last 100 location records
if (profile.locationHistory.length > 100) {
profile.locationHistory = profile.locationHistory.slice(-100)
}
// Calculate location-based threat score
profile.threatScore = this.calculateLocationThreatScore(event.data.geolocation, profile)
}
}
private async processThreatDetection(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
if (event.data.threatScore !== undefined) {
profile.threatScore = Math.max(profile.threatScore, event.data.threatScore)
// Add alert if threat score is high
if (event.data.threatScore > 75) {
profile.alerts.push({
type: 'threat_detected',
severity: event.data.threatScore > 90 ? 'critical' : 'high',
timestamp: Date.now(),
description: `Threat score ${event.data.threatScore} detected for IP ${event.ip}`
})
}
}
}
private async processBehavioralAnomaly(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
if (event.data.behavioralFlags) {
profile.behavioralProfile.riskFactors.push(...event.data.behavioralFlags)
profile.behavioralProfile.lastActivity = Date.now()
// Update activity frequency
const recentActivity = profile.locationHistory.filter(
loc => Date.now() - loc.timestamp < 24 * 60 * 60 * 1000 // Last 24 hours
)
profile.behavioralProfile.activityFrequency = recentActivity.length
// Generate alert for significant anomalies
if (event.data.behavioralFlags.some(flag => flag.includes('suspicious'))) {
profile.alerts.push({
type: 'behavioral_anomaly',
severity: 'medium',
timestamp: Date.now(),
description: `Behavioral anomaly detected: ${event.data.behavioralFlags.join(', ')}`
})
}
}
}
private async processReputationChange(event: IPIntelligenceEvent, profile: IPIntelligenceProfile): Promise<void> {
if (event.data.reputationScore !== undefined) {
profile.reputationScore = event.data.reputationScore
// Add alert if reputation drops significantly
const reputationDrop = profile.reputationScore - (profile.reputationScore + event.data.reputationScore) / 2
if (reputationDrop < -20) {
profile.alerts.push({
type: 'reputation_change',
severity: reputationDrop < -50 ? 'critical' : 'high',
timestamp: Date.now(),
description: `Reputation score dropped by ${Math.abs(reputationDrop)} points`
})
}
}
}
private calculateLocationThreatScore(location: GeolocationResult, profile: IPIntelligenceProfile): number {
let score = 50 // Base score
// VPN/Proxy detection reduces score
if (location.metadata?.isVpn || location.metadata?.isDatacenter) {
score -= 20
}
// Corporate networks increase score
if (location.metadata?.isCorporate) {
score += 10
}
// High-risk countries
const highRiskCountries = ['RU', 'CN', 'IR', 'KP', 'SY']
if (highRiskCountries.includes(location.countryCode)) {
score -= 15
}
// Recent location changes
if (profile.locationHistory.length > 1) {
const lastLocation = profile.locationHistory[profile.locationHistory.length - 2]
const timeDiff = (Date.now() - lastLocation.timestamp) / (1000 * 3600) // hours
const distance = this.calculateDistance(
lastLocation.latitude || 0,
lastLocation.longitude || 0,
location.latitude || 0,
location.longitude || 0
)
if (distance > 1000 && timeDiff < 2) { // 1000km in less than 2 hours
score -= 25 // Suspicious rapid movement
}
}
return Math.max(0, Math.min(100, score))
}
private calculateDistance(lat1: number, lng1: number, lat2: number, lng2: number): number {
const R = 6371 // Earth's radius in km
const dLat = this.toRadians(lat2 - lat1)
const dLng = this.toRadians(lng2 - lng1)
const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(this.toRadians(lat1)) * Math.cos(this.toRadians(lat2)) *
Math.sin(dLng / 2) * Math.sin(dLng / 2)
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a))
return R * c
}
private toRadians(degrees: number): number {
return degrees * (Math.PI / 180)
}
private notifySubscribers(event: IPIntelligenceEvent): void {
const callbacks = this.subscribers.get(event.eventType) || []
const profileCallbacks = this.subscribers.get('profile_update') || []
callbacks.forEach(callback => {
try {
callback(event)
} catch (error) {
console.error('Error in event subscriber:', error)
}
})
// Notify profile update subscribers
profileCallbacks.forEach(callback => {
try {
callback(event)
} catch (error) {
console.error('Error in profile update subscriber:', error)
}
})
}
private updateMetrics(batchSize: number, processingTime: number): void {
this.metrics.processedEvents += batchSize
this.metrics.throughput = (batchSize / (processingTime / 1000)) // events per second
this.metrics.queueSize = this.eventQueue.length
// Update memory usage estimate
this.metrics.memoryUsage = this.profiles.size * 0.5 + this.eventQueue.length * 0.1 // MB estimate
}
private updateAverageProcessingTime(processingTime: number): void {
const alpha = 0.1 // Smoothing factor
this.metrics.averageProcessingTime =
this.metrics.averageProcessingTime * (1 - alpha) + processingTime * alpha
}
private handleProcessingError(batch: IPIntelligenceEvent[], error: any): void {
this.metrics.errorRate = (this.metrics.errorRate + batch.length) / (this.metrics.processedEvents + batch.length)
// Retry failed events with exponential backoff
setTimeout(() => {
batch.forEach(event => this.eventQueue.unshift(event))
}, 1000 * Math.pow(2, this.config.retryAttempts))
}
private startProcessingLoop(): void {
setInterval(async () => {
if (this.eventQueue.length > 0 && !this.isProcessing) {
await this.flushQueue()
}
}, this.config.flushInterval)
}
private startMetricsCollection(): void {
// Collect system metrics every 30 seconds
setInterval(() => {
this.collectSystemMetrics()
}, 30000)
}
private collectSystemMetrics(): void {
// In production, this would collect actual system metrics
// For now, we'll simulate some metrics
const memoryUsage = process.memoryUsage()
this.metrics.memoryUsage = Math.round(memoryUsage.heapUsed / 1024 / 1024) // MB
}
}
// Integration with Express.js for real-time API
const intelligenceEngine = new RealTimeIPIntelligenceEngine({
batchSize: 100,
flushInterval: 1000, // 1 second
maxQueueSize: 10000,
retryAttempts: 3,
backoffMultiplier: 2
})
// Middleware for automatic IP intelligence processing
const ipIntelligenceMiddleware = async (req: any, res: any, next: any) => {
try {
const clientIP = req.ip || req.connection.remoteAddress || req.socket.remoteAddress
if (clientIP && !clientIP.includes('127.0.0.1') && !clientIP.includes('::1')) {
// Get current intelligence profile
const profile = intelligenceEngine.getIntelligenceProfile(clientIP)
// Create location update event
const locationEvent: IPIntelligenceEvent = {
ip: clientIP,
timestamp: Date.now(),
eventType: 'location_update',
confidence: 85,
data: {
geolocation: {
ip: clientIP,
country: 'United States',
countryCode: 'US',
region: 'California',
city: 'San Francisco',
latitude: 37.7749,
longitude: -122.4194,
accuracy: 'coordinates',
confidence: 85,
provider: 'premium_provider',
cached: false,
timestamp: Date.now()
}
},
source: 'middleware',
priority: 'medium'
}
// Process event asynchronously
intelligenceEngine.processEvent(locationEvent).catch(console.error)
// Add intelligence data to request
req.ipIntelligence = {
profile,
currentLocation: locationEvent.data.geolocation,
threatScore: profile?.threatScore || 50,
reputationScore: profile?.reputationScore || 50
}
// Set security headers based on intelligence
if (profile && profile.threatScore > 75) {
res.set('X-Risk-Level', 'high')
res.set('X-Threat-Score', profile.threatScore.toString())
}
}
} catch (error) {
console.error('IP Intelligence middleware error:', error)
req.ipIntelligence = null
}
next()
}
// Real-time intelligence API endpoints
app.use('/api', ipIntelligenceMiddleware)
// Get current IP intelligence
app.get('/api/ip-intelligence/:ip', (req, res) => {
const profile = intelligenceEngine.getIntelligenceProfile(req.params.ip)
if (profile) {
res.json({
profile,
metrics: intelligenceEngine.getMetrics(),
timestamp: new Date().toISOString()
})
} else {
res.status(404).json({
error: 'IP intelligence profile not found',
message: 'No intelligence data available for this IP address'
})
}
})
// Subscribe to real-time intelligence updates (WebSocket)
app.ws('/api/intelligence/stream', (ws: any) => {
const subscriptionId = intelligenceEngine.subscribe('profile_update', (event) => {
ws.send(JSON.stringify({
type: 'intelligence_update',
data: event,
timestamp: new Date().toISOString()
}))
})
ws.on('close', () => {
intelligenceEngine.unsubscribe('profile_update', subscriptionId)
})
ws.on('message', (message: string) => {
try {
const data = JSON.parse(message)
if (data.type === 'subscribe' && data.eventTypes) {
data.eventTypes.forEach((eventType: string) => {
intelligenceEngine.subscribe(eventType, (event) => {
ws.send(JSON.stringify({
type: 'event',
eventType,
data: event,
timestamp: new Date().toISOString()
}))
})
})
}
} catch (error) {
console.error('WebSocket message error:', error)
}
})
})
// Real-time analytics dashboard data
app.get('/api/intelligence/analytics', (req, res) => {
res.json({
metrics: intelligenceEngine.getMetrics(),
activeProfiles: intelligenceEngine['profiles'].size,
queueSize: intelligenceEngine['eventQueue'].length,
subscriptions: Array.from(intelligenceEngine['subscribers'].entries()).map(([eventType, callbacks]) => ({
eventType,
subscriberCount: callbacks.length
})),
timestamp: new Date().toISOString()
})
})
// Health check with intelligence metrics
app.get('/health/intelligence', (req, res) => {
const metrics = intelligenceEngine.getMetrics()
res.json({
status: metrics.errorRate < 0.01 ? 'healthy' : 'degraded',
metrics,
uptime: process.uptime(),
timestamp: new Date().toISOString()
})
})
console.log('Real-time IP intelligence engine initialized')Streaming Analytics Pipeline {#streaming-analytics}
// Advanced streaming analytics for IP intelligence patterns
interface AnalyticsEvent {
id: string
timestamp: number
eventType: 'pattern_detected' | 'trend_analysis' | 'anomaly_alert' | 'correlation_found'
data: {
pattern?: {
type: string
confidence: number
duration: number
affectedIPs: string[]
}
trend?: {
metric: string
direction: 'increasing' | 'decreasing' | 'stable'
changeRate: number
timeframe: number
}
anomaly?: {
type: string
severity: string
affectedRegions: string[]
duration: number
}
correlation?: {
factors: string[]
strength: number
sampleSize: number
}
}
metadata: Record<string, any>
}
interface StreamingAnalyticsConfig {
windowSize: number // Time window in seconds
slideInterval: number // How often to update analysis
minPatternSupport: number // Minimum occurrences for pattern detection
trendSensitivity: number // How sensitive to trend changes (0-1)
anomalyThreshold: number // Standard deviations for anomaly detection
}
class IPIntelligenceAnalyticsPipeline {
private eventBuffer: AnalyticsEvent[] = []
private patternDetector: PatternDetector
private trendAnalyzer: TrendAnalyzer
private anomalyDetector: AnomalyDetector
private correlationEngine: CorrelationEngine
private config: StreamingAnalyticsConfig
constructor(config: StreamingAnalyticsConfig) {
this.config = config
this.patternDetector = new PatternDetector(config)
this.trendAnalyzer = new TrendAnalyzer(config)
this.anomalyDetector = new AnomalyDetector(config)
this.correlationEngine = new CorrelationEngine(config)
this.startStreamingAnalysis()
}
// Process new analytics event
async processAnalyticsEvent(event: AnalyticsEvent): Promise<AnalyticsEvent[]> {
this.eventBuffer.push(event)
// Keep buffer within window size
const windowStart = Date.now() - (this.config.windowSize * 1000)
this.eventBuffer = this.eventBuffer.filter(e => e.timestamp > windowStart)
const insights: AnalyticsEvent[] = []
// Run all analytics engines
const patternInsights = await this.patternDetector.detectPatterns(this.eventBuffer)
const trendInsights = await this.trendAnalyzer.analyzeTrends(this.eventBuffer)
const anomalyInsights = await this.anomalyDetector.detectAnomalies(this.eventBuffer)
const correlationInsights = await this.correlationEngine.findCorrelations(this.eventBuffer)
insights.push(...patternInsights, ...trendInsights, ...anomalyInsights, ...correlationInsights)
return insights
}
// Get current analytics state
getAnalyticsState(): {
bufferSize: number
windowUtilization: number
activePatterns: number
recentTrends: number
anomalyCount: number
} {
return {
bufferSize: this.eventBuffer.length,
windowUtilization: this.eventBuffer.length / 1000, // Assuming 1000 is max buffer
activePatterns: this.patternDetector.getActivePatternCount(),
recentTrends: this.trendAnalyzer.getActiveTrendCount(),
anomalyCount: this.anomalyDetector.getAnomalyCount()
}
}
private startStreamingAnalysis(): void {
setInterval(async () => {
if (this.eventBuffer.length > 0) {
const insights = await this.processAnalyticsEvent({
id: `analysis_${Date.now()}`,
timestamp: Date.now(),
eventType: 'trend_analysis',
data: {},
metadata: {}
})
// Emit insights to subscribers
this.emitInsights(insights)
}
}, this.config.slideInterval * 1000)
}
private emitInsights(insights: AnalyticsEvent[]): void {
// In production, this would emit to WebSocket connections, Kafka, etc.
insights.forEach(insight => {
console.log(`Analytics Insight [${insight.eventType}]: ${JSON.stringify(insight.data)}`)
})
}
}
class PatternDetector {
private activePatterns: Map<string, any> = new Map()
constructor(private config: StreamingAnalyticsConfig) {}
async detectPatterns(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
const insights: AnalyticsEvent[] = []
const patterns = this.findFrequentPatterns(events)
for (const pattern of patterns) {
if (pattern.support >= this.config.minPatternSupport) {
const patternInsight: AnalyticsEvent = {
id: `pattern_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'pattern_detected',
data: {
pattern: {
type: pattern.type,
confidence: pattern.confidence,
duration: pattern.duration,
affectedIPs: pattern.ips
}
},
metadata: { patternId: pattern.id }
}
insights.push(patternInsight)
this.activePatterns.set(pattern.id, pattern)
}
}
return insights
}
private findFrequentPatterns(events: AnalyticsEvent[]): Array<{
id: string
type: string
support: number
confidence: number
duration: number
ips: string[]
}> {
// Simplified pattern detection - in production, use more sophisticated algorithms
const patterns = []
// Detect location change patterns
const locationChanges = events.filter(e => e.data.pattern?.type === 'location_change')
if (locationChanges.length >= 3) {
patterns.push({
id: 'rapid_location_changes',
type: 'location_change',
support: locationChanges.length,
confidence: 0.8,
duration: 300, // 5 minutes
ips: [...new Set(locationChanges.map(e => e.metadata.ip))]
})
}
// Detect threat spike patterns
const threatEvents = events.filter(e => e.data.trend?.metric === 'threat_score')
if (threatEvents.length >= 5) {
patterns.push({
id: 'threat_spike',
type: 'threat_increase',
support: threatEvents.length,
confidence: 0.9,
duration: 180, // 3 minutes
ips: [...new Set(threatEvents.map(e => e.metadata.ip))]
})
}
return patterns
}
getActivePatternCount(): number {
return this.activePatterns.size
}
}
class TrendAnalyzer {
private trendHistory: Map<string, number[]> = new Map()
constructor(private config: StreamingAnalyticsConfig) {}
async analyzeTrends(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
const insights: AnalyticsEvent[] = []
// Analyze threat score trends
const threatTrends = this.analyzeMetricTrend(events, 'threat_score')
threatTrends.forEach(trend => {
if (Math.abs(trend.changeRate) > this.config.trendSensitivity) {
insights.push({
id: `trend_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'trend_analysis',
data: { trend },
metadata: { metric: 'threat_score' }
})
}
})
// Analyze activity frequency trends
const activityTrends = this.analyzeMetricTrend(events, 'activity_frequency')
activityTrends.forEach(trend => {
if (Math.abs(trend.changeRate) > this.config.trendSensitivity) {
insights.push({
id: `trend_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'trend_analysis',
data: { trend },
metadata: { metric: 'activity_frequency' }
})
}
})
return insights
}
private analyzeMetricTrend(events: AnalyticsEvent[], metric: string): Array<{
metric: string
direction: 'increasing' | 'decreasing' | 'stable'
changeRate: number
timeframe: number
}> {
const metricEvents = events.filter(e => e.data.trend?.metric === metric)
if (metricEvents.length < 3) return []
// Simple linear regression for trend detection
const values = metricEvents.map(e => e.data.trend!.changeRate)
const trend = this.calculateTrend(values)
return [{
metric,
direction: trend > 0.1 ? 'increasing' : trend < -0.1 ? 'decreasing' : 'stable',
changeRate: trend,
timeframe: this.config.windowSize
}]
}
private calculateTrend(values: number[]): number {
if (values.length < 2) return 0
let sumX = 0, sumY = 0, sumXY = 0, sumXX = 0
const n = values.length
for (let i = 0; i < n; i++) {
sumX += i
sumY += values[i]
sumXY += i * values[i]
sumXX += i * i
}
const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX)
return slope
}
getActiveTrendCount(): number {
return this.trendHistory.size
}
}
class AnomalyDetector {
private baselineStats: Map<string, { mean: number; std: number }> = new Map()
private anomalyCount = 0
constructor(private config: StreamingAnalyticsConfig) {}
async detectAnomalies(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
const insights: AnalyticsEvent[] = []
// Detect threat score anomalies
const threatAnomalies = this.detectMetricAnomalies(events, 'threat_score')
threatAnomalies.forEach(anomaly => {
insights.push({
id: `anomaly_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'anomaly_alert',
data: { anomaly },
metadata: { metric: 'threat_score' }
})
this.anomalyCount++
})
// Detect activity anomalies
const activityAnomalies = this.detectMetricAnomalies(events, 'activity_frequency')
activityAnomalies.forEach(anomaly => {
insights.push({
id: `anomaly_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'anomaly_alert',
data: { anomaly },
metadata: { metric: 'activity_frequency' }
})
this.anomalyCount++
})
return insights
}
private detectMetricAnomalies(events: AnalyticsEvent[], metric: string): Array<{
type: string
severity: string
affectedRegions: string[]
duration: number
}> {
const metricEvents = events.filter(e => e.metadata.metric === metric)
const values = metricEvents.map(e => e.data.anomaly?.severity === 'high' ? 1 : 0)
if (values.length < 10) return []
const mean = values.reduce((a, b) => a + b, 0) / values.length
const variance = values.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / values.length
const std = Math.sqrt(variance)
// Update baseline statistics
this.baselineStats.set(metric, { mean, std })
const anomalies = []
const currentValue = values[values.length - 1]
if (Math.abs(currentValue - mean) > this.config.anomalyThreshold * std) {
anomalies.push({
type: `${metric}_spike`,
severity: currentValue > mean + 2 * std ? 'critical' : 'high',
affectedRegions: ['global'], // In production, derive from events
duration: 60 // 1 minute
})
}
return anomalies
}
getAnomalyCount(): number {
return this.anomalyCount
}
}
class CorrelationEngine {
constructor(private config: StreamingAnalyticsConfig) {}
async findCorrelations(events: AnalyticsEvent[]): Promise<AnalyticsEvent[]> {
const insights: AnalyticsEvent[] = []
// Find correlations between threat scores and geographic regions
const geoThreatCorrelations = this.findGeographicCorrelations(events)
geoThreatCorrelations.forEach(correlation => {
insights.push({
id: `correlation_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'correlation_found',
data: { correlation },
metadata: { correlationType: 'geo_threat' }
})
})
// Find correlations between time of day and activity patterns
const temporalCorrelations = this.findTemporalCorrelations(events)
temporalCorrelations.forEach(correlation => {
insights.push({
id: `correlation_${Date.now()}_${Math.random()}`,
timestamp: Date.now(),
eventType: 'correlation_found',
data: { correlation },
metadata: { correlationType: 'temporal_activity' }
})
})
return insights
}
private findGeographicCorrelations(events: AnalyticsEvent[]): Array<{
factors: string[]
strength: number
sampleSize: number
}> {
// Simplified correlation detection
const correlations = []
// Example: High threat scores in specific regions
const regionThreats = new Map<string, number[]>()
events.forEach(event => {
if (event.metadata.region && event.data.threatScore) {
if (!regionThreats.has(event.metadata.region)) {
regionThreats.set(event.metadata.region, [])
}
regionThreats.get(event.metadata.region)!.push(event.data.threatScore)
}
})
// Find regions with consistently high threat scores
for (const [region, scores] of regionThreats) {
if (scores.length >= 5) {
const avgScore = scores.reduce((a, b) => a + b, 0) / scores.length
if (avgScore > 75) {
correlations.push({
factors: ['geographic_region', 'threat_score'],
strength: Math.min(1.0, avgScore / 100),
sampleSize: scores.length
})
}
}
}
return correlations
}
private findTemporalCorrelations(events: AnalyticsEvent[]): Array<{
factors: string[]
strength: number
sampleSize: number
}> {
// Find time-based patterns in activity
const hourActivity = new Map<number, number>()
events.forEach(event => {
if (event.metadata.hour !== undefined) {
hourActivity.set(event.metadata.hour, (hourActivity.get(event.metadata.hour) || 0) + 1)
}
})
// Detect peak hours
let maxActivity = 0
let peakHour = 0
for (const [hour, count] of hourActivity) {
if (count > maxActivity) {
maxActivity = count
peakHour = hour
}
}
if (maxActivity > 10) { // Significant peak
return [{
factors: ['time_of_day', 'activity_level'],
strength: maxActivity / events.length,
sampleSize: events.length
}]
}
return []
}
}
// Initialize analytics pipeline
const analyticsConfig: StreamingAnalyticsConfig = {
windowSize: 300, // 5 minutes
slideInterval: 60, // Update every minute
minPatternSupport: 3,
trendSensitivity: 0.2,
anomalyThreshold: 2.0
}
const analyticsPipeline = new IPIntelligenceAnalyticsPipeline(analyticsConfig)
// Analytics API endpoints
app.get('/api/analytics/insights', async (req, res) => {
const state = analyticsPipeline.getAnalyticsState()
res.json({
state,
timestamp: new Date().toISOString()
})
})
app.get('/api/analytics/patterns', async (req, res) => {
const patterns = analyticsPipeline['patternDetector'].getActivePatternCount()
res.json({
activePatterns: patterns,
timestamp: new Date().toISOString()
})
})
app.get('/api/analytics/trends', async (req, res) => {
const trends = analyticsPipeline['trendAnalyzer'].getActiveTrendCount()
res.json({
activeTrends: trends,
timestamp: new Date().toISOString()
})
})
console.log('Streaming analytics pipeline initialized')Performance Monitoring Dashboard {#monitoring-dashboard}
// Real-time performance monitoring for IP intelligence systems
interface PerformanceMetric {
name: string
value: number
unit: string
timestamp: number
tags: Record<string, string>
}
interface SystemHealth {
status: 'healthy' | 'degraded' | 'unhealthy'
cpuUsage: number
memoryUsage: number
diskUsage: number
networkIO: { inbound: number; outbound: number }
activeConnections: number
errorRate: number
responseTime: number
}
interface AlertRule {
id: string
name: string
condition: {
metric: string
operator: '>' | '<' | '>=' | '<=' | '=='
threshold: number
duration: number // seconds - how long condition must be true
}
severity: 'low' | 'medium' | 'high' | 'critical'
message: string
cooldown: number // seconds between alerts
}
class PerformanceMonitor {
private metrics: Map<string, PerformanceMetric[]> = new Map()
private alertRules: AlertRule[] = []
private activeAlerts: Map<string, { alertId: string; startTime: number }> = new Map()
private subscribers: Array<(metric: PerformanceMetric) => void> = []
constructor() {
this.initializeDefaultAlertRules()
this.startMetricsCollection()
}
// Record a performance metric
recordMetric(name: string, value: number, unit: string, tags: Record<string, string> = {}): void {
const metric: PerformanceMetric = {
name,
value,
unit,
timestamp: Date.now(),
tags
}
if (!this.metrics.has(name)) {
this.metrics.set(name, [])
}
const metricHistory = this.metrics.get(name)!
metricHistory.push(metric)
// Keep only last 1000 metrics per type
if (metricHistory.length > 1000) {
metricHistory.splice(0, metricHistory.length - 1000)
}
// Notify subscribers
this.subscribers.forEach(callback => {
try {
callback(metric)
} catch (error) {
console.error('Error in performance metric subscriber:', error)
}
})
// Check alert conditions
this.checkAlertConditions(metric)
}
// Subscribe to real-time performance metrics
subscribe(callback: (metric: PerformanceMetric) => void): () => void {
this.subscribers.push(callback)
// Return unsubscribe function
return () => {
const index = this.subscribers.indexOf(callback)
if (index > -1) {
this.subscribers.splice(index, 1)
}
}
}
// Get current system health
getSystemHealth(): SystemHealth {
const cpuMetric = this.getLatestMetric('cpu_usage')
const memoryMetric = this.getLatestMetric('memory_usage')
const diskMetric = this.getLatestMetric('disk_usage')
const networkMetrics = this.getNetworkMetrics()
const errorRate = this.getLatestMetric('error_rate')?.value || 0
const responseTime = this.getLatestMetric('response_time')?.value || 0
let status: SystemHealth['status'] = 'healthy'
if (cpuMetric && cpuMetric.value > 80) status = 'degraded'
if (memoryMetric && memoryMetric.value > 90) status = 'unhealthy'
if (errorRate > 0.05) status = 'unhealthy'
return {
status,
cpuUsage: cpuMetric?.value || 0,
memoryUsage: memoryMetric?.value || 0,
diskUsage: diskMetric?.value || 0,
networkIO: networkMetrics,
activeConnections: this.getLatestMetric('active_connections')?.value || 0,
errorRate,
responseTime
}
}
// Get metrics for a specific time range
getMetricsInRange(name: string, startTime: number, endTime: number): PerformanceMetric[] {
const metricHistory = this.metrics.get(name) || []
return metricHistory.filter(m => m.timestamp >= startTime && m.timestamp <= endTime)
}
// Get aggregated metrics (average, min, max, etc.)
getAggregatedMetrics(name: string, timeframe: number = 300000): {
average: number
min: number
max: number
count: number
latest: number
} {
const cutoff = Date.now() - timeframe
const relevantMetrics = this.metrics.get(name)?.filter(m => m.timestamp > cutoff) || []
if (relevantMetrics.length === 0) {
return { average: 0, min: 0, max: 0, count: 0, latest: 0 }
}
const values = relevantMetrics.map(m => m.value)
const latest = values[values.length - 1]
return {
average: values.reduce((a, b) => a + b, 0) / values.length,
min: Math.min(...values),
max: Math.max(...values),
count: values.length,
latest
}
}
private getLatestMetric(name: string): PerformanceMetric | null {
const metricHistory = this.metrics.get(name)
return metricHistory && metricHistory.length > 0 ? metricHistory[metricHistory.length - 1] : null
}
private getNetworkMetrics(): { inbound: number; outbound: number } {
const inbound = this.getLatestMetric('network_inbound')?.value || 0
const outbound = this.getLatestMetric('network_outbound')?.value || 0
return { inbound, outbound }
}
private checkAlertConditions(metric: PerformanceMetric): void {
for (const rule of this.alertRules) {
if (metric.name === rule.condition.metric) {
const conditionMet = this.evaluateCondition(metric.value, rule.condition)
if (conditionMet) {
const activeAlert = this.activeAlerts.get(rule.id)
if (!activeAlert || Date.now() - activeAlert.startTime > rule.cooldown * 1000) {
this.triggerAlert(rule, metric)
}
} else {
// Clear active alert if condition no longer met
if (this.activeAlerts.has(rule.id)) {
this.activeAlerts.delete(rule.id)
}
}
}
}
}
private evaluateCondition(value: number, condition: AlertRule['condition']): boolean {
switch (condition.operator) {
case '>': return value > condition.threshold
case '<': return value < condition.threshold
case '>=': return value >= condition.threshold
case '<=': return value <= condition.threshold
case '==': return Math.abs(value - condition.threshold) < 0.001
default: return false
}
}
private triggerAlert(rule: AlertRule, metric: PerformanceMetric): void {
const alert = {
alertId: rule.id,
startTime: Date.now()
}
this.activeAlerts.set(rule.id, alert)
// In production, this would send notifications, log to external systems, etc.
console.warn(`🚨 ALERT [${rule.severity.toUpperCase()}]: ${rule.message}`)
console.warn(` Metric: ${metric.name} = ${metric.value}${metric.unit}`)
console.warn(` Threshold: ${rule.condition.metric} ${rule.condition.operator} ${rule.condition.threshold}`)
}
private initializeDefaultAlertRules(): void {
this.alertRules = [
{
id: 'high_cpu',
name: 'High CPU Usage',
condition: {
metric: 'cpu_usage',
operator: '>',
threshold: 80,
duration: 300 // 5 minutes
},
severity: 'high',
message: 'CPU usage has exceeded 80% for more than 5 minutes',
cooldown: 1800 // 30 minutes
},
{
id: 'high_memory',
name: 'High Memory Usage',
condition: {
metric: 'memory_usage',
operator: '>',
threshold: 85,
duration: 60 // 1 minute
},
severity: 'critical',
message: 'Memory usage has exceeded 85%',
cooldown: 600 // 10 minutes
},
{
id: 'high_error_rate',
name: 'High Error Rate',
condition: {
metric: 'error_rate',
operator: '>',
threshold: 0.05, // 5%
duration: 180 // 3 minutes
},
severity: 'medium',
message: 'Error rate has exceeded 5% for more than 3 minutes',
cooldown: 900 // 15 minutes
},
{
id: 'slow_response',
name: 'Slow Response Time',
condition: {
metric: 'response_time',
operator: '>',
threshold: 2000, // 2 seconds
duration: 60 // 1 minute
},
severity: 'medium',
message: 'Average response time has exceeded 2 seconds',
cooldown: 300 // 5 minutes
}
]
}
private startMetricsCollection(): void {
// Collect system metrics every 10 seconds
setInterval(() => {
this.collectSystemMetrics()
}, 10000)
// Collect application metrics every 30 seconds
setInterval(() => {
this.collectApplicationMetrics()
}, 30000)
}
private collectSystemMetrics(): void {
// In production, use system monitoring tools (e.g., os-utils, systeminformation)
// For demo, we'll simulate metrics
const cpuUsage = Math.random() * 100
const memoryUsage = Math.random() * 100
const diskUsage = Math.random() * 100
this.recordMetric('cpu_usage', cpuUsage, '%', { source: 'system' })
this.recordMetric('memory_usage', memoryUsage, '%', { source: 'system' })
this.recordMetric('disk_usage', diskUsage, '%', { source: 'system' })
// Network I/O (simulated)
this.recordMetric('network_inbound', Math.random() * 1000, 'KB/s', { source: 'system' })
this.recordMetric('network_outbound', Math.random() * 500, 'KB/s', { source: 'system' })
}
private collectApplicationMetrics(): void {
// Collect IP intelligence specific metrics
if (intelligenceEngine) {
const metrics = intelligenceEngine.getMetrics()
this.recordMetric('processed_events', metrics.processedEvents, 'count', { source: 'application' })
this.recordMetric('average_processing_time', metrics.averageProcessingTime, 'ms', { source: 'application' })
this.recordMetric('error_rate', metrics.errorRate, 'ratio', { source: 'application' })
this.recordMetric('throughput', metrics.throughput, 'events/sec', { source: 'application' })
this.recordMetric('queue_size', metrics.queueSize, 'count', { source: 'application' })
this.recordMetric('memory_usage', metrics.memoryUsage, 'MB', { source: 'application' })
}
if (analyticsPipeline) {
const state = analyticsPipeline.getAnalyticsState()
this.recordMetric('buffer_size', state.bufferSize, 'count', { source: 'analytics' })
this.recordMetric('window_utilization', state.windowUtilization, 'ratio', { source: 'analytics' })
this.recordMetric('active_patterns', state.activePatterns, 'count', { source: 'analytics' })
this.recordMetric('recent_trends', state.recentTrends, 'count', { source: 'analytics' })
this.recordMetric('anomaly_count', state.anomalyCount, 'count', { source: 'analytics' })
}
}
}
// Initialize performance monitoring
const performanceMonitor = new PerformanceMonitor()
// Real-time performance dashboard API
app.get('/api/performance/health', (req, res) => {
const health = performanceMonitor.getSystemHealth()
res.json({
health,
timestamp: new Date().toISOString()
})
})
app.get('/api/performance/metrics/:name', (req, res) => {
const timeframe = parseInt(req.query.timeframe as string) || 300000 // 5 minutes default
const metrics = performanceMonitor.getAggregatedMetrics(req.params.name, timeframe)
res.json({
metrics,
timeframe,
timestamp: new Date().toISOString()
})
})
app.get('/api/performance/metrics/:name/history', (req, res) => {
const startTime = parseInt(req.query.start as string) || Date.now() - 3600000 // 1 hour ago
const endTime = parseInt(req.query.end as string) || Date.now()
const metrics = performanceMonitor.getMetricsInRange(req.params.name, startTime, endTime)
res.json({
metrics: metrics.map(m => ({ value: m.value, timestamp: m.timestamp })),
count: metrics.length,
timestamp: new Date().toISOString()
})
})
// WebSocket endpoint for real-time performance metrics
app.ws('/api/performance/stream', (ws: any) => {
const unsubscribe = performanceMonitor.subscribe((metric) => {
ws.send(JSON.stringify({
type: 'performance_metric',
data: metric,
timestamp: new Date().toISOString()
}))
})
ws.on('close', () => {
unsubscribe()
})
})
// Alert management endpoints
app.get('/api/performance/alerts', (req, res) => {
const activeAlerts = Array.from(performanceMonitor['activeAlerts'].entries()).map(([ruleId, alert]) => {
const rule = performanceMonitor['alertRules'].find(r => r.id === ruleId)
return {
ruleId,
ruleName: rule?.name,
severity: rule?.severity,
message: rule?.message,
startTime: alert.startTime,
duration: Date.now() - alert.startTime
}
})
res.json({
activeAlerts,
totalActive: activeAlerts.length,
timestamp: new Date().toISOString()
})
})
console.log('Performance monitoring dashboard initialized')Implementation Challenges {#implementation-challenges}
Building real-time IP intelligence systems presents several technical and operational challenges that require careful consideration.
Scalability Challenges
High-Volume Processing
- Handling millions of IP lookups per second
- Managing memory usage for large IP databases
- Balancing accuracy vs. performance trade-offs
Geographic Distribution
- Minimizing latency for global users
- Managing data sovereignty requirements
- Handling regional IP allocation changes
Data Quality Challenges
Accuracy vs. Speed
- Real-time updates vs. data freshness
- Multiple data source reconciliation
- Handling conflicting geolocation results
Edge Cases
- Mobile IP addresses and carrier NAT
- VPN and proxy detection accuracy
- IPv6 adoption and dual-stack environments
Optimization Techniques {#optimization-techniques}
Effective optimization requires understanding performance bottlenecks and implementing targeted improvements.
Caching Optimization
interface CacheStrategy {
level: 'L1' | 'L2' | 'L3'
ttl: number
maxSize: number
evictionPolicy: 'LRU' | 'LFU' | 'TTL'
}
class IntelligentCacheManager {
private caches: Map<string, CacheStrategy> = new Map()
optimizeCacheStrategy(ipPattern: string, accessFrequency: number): CacheStrategy {
if (accessFrequency > 1000) {
return {
level: 'L1',
ttl: 3600, // 1 hour
maxSize: 1000000,
evictionPolicy: 'LRU'
}
} else if (accessFrequency > 100) {
return {
level: 'L2',
ttl: 1800, // 30 minutes
maxSize: 100000,
evictionPolicy: 'LFU'
}
} else {
return {
level: 'L3',
ttl: 300, // 5 minutes
maxSize: 10000,
evictionPolicy: 'TTL'
}
}
}
}Performance Tuning
Database Optimization
- Indexing strategies for IP ranges
- Query optimization for geolocation lookups
- Connection pooling and caching
Network Optimization
- CDN integration for static data
- Compression for API responses
- HTTP/2 and WebSocket optimization
Memory Management
- Efficient data structures for IP ranges
- Garbage collection tuning
- Memory-mapped files for large datasets
Conclusion {#conclusion}
Real-time IP intelligence systems require sophisticated architecture combining streaming data processing, intelligent caching, and comprehensive monitoring. Success depends on balancing accuracy, performance, and scalability while maintaining low latency and high availability.
Key success factors include implementing efficient caching strategies, optimizing data structures for IP lookups, maintaining comprehensive performance monitoring, and continuously adapting to changing network topologies and user patterns.
Build responsive, location-aware applications with our real-time IP intelligence APIs, designed for enterprise-scale performance and global coverage.