Bot Detection and Mitigation: Identifying Automated Traffic

Implement advanced bot detection and mitigation strategies to protect your APIs from automated abuse and malicious traffic.

Bot Detection and Mitigation: Identifying Automated Traffic
August 6, 2025
42 min read
API Security

Bot Detection and Mitigation: Identifying Automated Traffic


Bot detection is crucial for protecting APIs from automated abuse while allowing legitimate automation. Implementing effective bot detection requires sophisticated analysis techniques and mitigation strategies.


Bot Detection and Mitigation Overview

Bot Detection and Mitigation Overview


Security Threat Landscape


Bot Detection and Mitigation requires careful consideration of multiple factors that impact implementation success and user experience.


Key Considerations


Business Impact

  • User experience enhancement
  • Operational efficiency gains
  • Cost optimization opportunities
  • Risk mitigation strategies

Detection Techniques


Advanced bot detection combines multiple signals and analysis techniques to accurately identify automated traffic while minimizing false positives.


Browser Fingerprinting


Device and Browser Analysis

  • Canvas fingerprinting for GPU detection
  • WebGL parameters and capabilities
  • Font enumeration and metrics
  • Plugin and extension detection
  • Screen resolution and color depth

// Advanced browser fingerprinting service
interface BrowserFingerprint {
  canvas: string
  webgl: string
  fonts: string[]
  plugins: string[]
  screen: {
    width: number
    height: number
    colorDepth: number
    pixelRatio: number
  }
  timezone: string
  language: string
  platform: string
  cookieEnabled: boolean
  doNotTrack?: string
  hardwareConcurrency?: number
  deviceMemory?: number
}

class FingerprintCollector {
  async collectFingerprint(): Promise<BrowserFingerprint> {
    const fingerprint: BrowserFingerprint = {
      canvas: await this.getCanvasFingerprint(),
      webgl: await this.getWebGLFingerprint(),
      fonts: await this.getFontList(),
      plugins: await this.getPluginList(),
      screen: this.getScreenInfo(),
      timezone: Intl.DateTimeFormat().resolvedOptions().timeZone,
      language: navigator.language,
      platform: navigator.platform,
      cookieEnabled: navigator.cookieEnabled,
      doNotTrack: navigator.doNotTrack || undefined,
      hardwareConcurrency: navigator.hardwareConcurrency,
      deviceMemory: (navigator as any).deviceMemory
    }

    return fingerprint
  }

  private async getCanvasFingerprint(): Promise<string> {
    const canvas = document.createElement('canvas')
    const ctx = canvas.getContext('2d')!

    // Draw a complex pattern
    canvas.width = 280
    canvas.height = 60

    ctx.textBaseline = 'top'
    ctx.font = '14px Arial'
    ctx.fillStyle = '#f60'
    ctx.fillRect(125, 1, 62, 20)
    ctx.fillStyle = '#069'
    ctx.fillText('🎯 Browser Fingerprint', 2, 15)
    ctx.fillStyle = 'rgba(102, 204, 0, 0.7)'
    ctx.fillText('Canvas Test String', 4, 35)

    // Add noise
    for (let i = 0; i < 50; i++) {
      ctx.fillStyle = `rgba(${Math.floor(Math.random() * 255)}, ${Math.floor(Math.random() * 255)}, ${Math.floor(Math.random() * 255)}, 0.5)`
      ctx.fillRect(Math.random() * 280, Math.random() * 60, 1, 1)
    }

    return canvas.toDataURL()
  }

  private async getWebGLFingerprint(): Promise<string> {
    const canvas = document.createElement('canvas')
    const gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl')

    if (!gl) return 'no-webgl'

    const debugInfo = gl.getExtension('WEBGL_debug_renderer_info')
    const vendor = debugInfo ? gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) : 'unknown'
    const renderer = debugInfo ? gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) : 'unknown'

    return `${vendor}-${renderer}`
  }

  private async getFontList(): Promise<string[]> {
    const baseFonts = ['Arial', 'Courier New', 'Georgia', 'Times New Roman', 'Verdana']
    const testString = 'mmmmmmmmmmlli'
    const testSize = '72px'
    const h = document.getElementsByTagName('body')[0]

    const defaultWidth: Record<string, number> = {}
    const defaultHeight: Record<string, number> = {}

    // Measure base fonts first
    for (const font of baseFonts) {
      const span = document.createElement('span')
      span.style.fontSize = testSize
      span.style.fontFamily = font
      span.innerHTML = testString
      h.appendChild(span)
      defaultWidth[font] = span.offsetWidth
      defaultHeight[font] = span.offsetHeight
      h.removeChild(span)
    }

    const availableFonts: string[] = []
    const fontsToTest = [
      'Abadi MT Condensed Light', 'Adobe Fangsong Std', 'Adobe Hebrew',
      'Adobe Ming Std', 'Agency FB', 'Aharoni', 'Aldhabi', 'AmeriGothic',
      // ... more fonts
    ]

    for (const font of fontsToTest) {
      const span = document.createElement('span')
      span.style.fontSize = testSize
      span.style.fontFamily = font + ',' + baseFonts[0]
      span.innerHTML = testString
      h.appendChild(span)

      const width = span.offsetWidth
      const height = span.offsetHeight
      h.removeChild(span)

      // If dimensions differ from default, font is available
      if (width !== defaultWidth[baseFonts[0]] || height !== defaultHeight[baseFonts[0]]) {
        availableFonts.push(font)
      }
    }

    return availableFonts
  }

  private async getPluginList(): Promise<string[]> {
    // Note: Plugin detection is deprecated, but still useful for bot detection
    const plugins: string[] = []

    if (navigator.plugins) {
      for (let i = 0; i < navigator.plugins.length; i++) {
        plugins.push(navigator.plugins[i].name)
      }
    }

    return plugins
  }

  private getScreenInfo() {
    return {
      width: screen.width,
      height: screen.height,
      colorDepth: screen.colorDepth,
      pixelRatio: window.devicePixelRatio || 1
    }
  }
}

// Usage example
const collector = new FingerprintCollector()
const fingerprint = await collector.collectFingerprint()
console.log('Browser fingerprint collected:', fingerprint)

Behavioral Analysis


Mouse and Interaction Patterns

  • Mouse movement velocity and patterns
  • Click timing and frequency
  • Scroll behavior and acceleration
  • Form interaction patterns
  • Time-based activity analysis

// Behavioral analysis engine
interface UserBehavior {
  mouseMovements: Array<{
    x: number
    y: number
    timestamp: number
    velocity: number
  }>
  clicks: Array<{
    x: number
    y: number
    timestamp: number
    target: string
    timeSincePageLoad: number
  }>
  scrolls: Array<{
    scrollY: number
    timestamp: number
    velocity: number
  }>
  keystrokes: Array<{
    key: string
    timestamp: number
    timeBetweenKeystrokes: number
  }>
  sessionDuration: number
  pageViews: number
  timeBetweenActions: number[]
}

interface BehaviorScore {
  isHuman: boolean
  confidence: number // 0-100
  suspiciousPatterns: string[]
  riskLevel: 'low' | 'medium' | 'high'
}

class BehaviorAnalyzer {
  private behaviorData: UserBehavior = {
    mouseMovements: [],
    clicks: [],
    scrolls: [],
    keystrokes: [],
    sessionDuration: 0,
    pageViews: 0,
    timeBetweenActions: []
  }

  private lastActionTime: number = Date.now()

  constructor() {
    this.initializeTracking()
  }

  private initializeTracking(): void {
    // Mouse movement tracking
    document.addEventListener('mousemove', (e) => {
      const now = Date.now()
      const lastMovement = this.behaviorData.mouseMovements[this.behaviorData.mouseMovements.length - 1]

      let velocity = 0
      if (lastMovement) {
        const distance = Math.sqrt(
          Math.pow(e.clientX - lastMovement.x, 2) +
          Math.pow(e.clientY - lastMovement.y, 2)
        )
        const timeDiff = now - lastMovement.timestamp
        velocity = distance / timeDiff
      }

      this.behaviorData.mouseMovements.push({
        x: e.clientX,
        y: e.clientY,
        timestamp: now,
        velocity
      })

      // Keep only recent movements (last 5 minutes)
      const fiveMinutesAgo = now - 5 * 60 * 1000
      this.behaviorData.mouseMovements = this.behaviorData.mouseMovements.filter(
        m => m.timestamp > fiveMinutesAgo
      )

      this.updateLastActionTime()
    })

    // Click tracking
    document.addEventListener('click', (e) => {
      const now = Date.now()
      const target = (e.target as Element).tagName.toLowerCase()

      this.behaviorData.clicks.push({
        x: e.clientX,
        y: e.clientY,
        timestamp: now,
        target,
        timeSincePageLoad: now - performance.now()
      })

      this.updateLastActionTime()
    })

    // Scroll tracking
    let lastScrollY = window.scrollY
    window.addEventListener('scroll', () => {
      const now = Date.now()
      const currentScrollY = window.scrollY
      const scrollDistance = currentScrollY - lastScrollY
      const timeDiff = now - (this.behaviorData.scrolls[this.behaviorData.scrolls.length - 1]?.timestamp || now)

      const velocity = Math.abs(scrollDistance) / Math.max(timeDiff, 1)

      this.behaviorData.scrolls.push({
        scrollY: currentScrollY,
        timestamp: now,
        velocity
      })

      lastScrollY = currentScrollY
      this.updateLastActionTime()
    })

    // Keystroke tracking (only for form inputs)
    document.addEventListener('keydown', (e) => {
      if (['INPUT', 'TEXTAREA'].includes((e.target as Element).tagName)) {
        const now = Date.now()
        const lastKeystroke = this.behaviorData.keystrokes[this.behaviorData.keystrokes.length - 1]

        const timeBetweenKeystrokes = lastKeystroke ? now - lastKeystroke.timestamp : 0

        this.behaviorData.keystrokes.push({
          key: e.key,
          timestamp: now,
          timeBetweenKeystrokes
        })

        this.updateLastActionTime()
      }
    })
  }

  private updateLastActionTime(): void {
    const now = Date.now()
    const timeDiff = now - this.lastActionTime

    if (timeDiff > 100) { // Only track significant delays
      this.behaviorData.timeBetweenActions.push(timeDiff)
    }

    this.lastActionTime = now
  }

  analyzeBehavior(): BehaviorScore {
    const analysis = {
      mouseAnalysis: this.analyzeMouseBehavior(),
      clickAnalysis: this.analyzeClickBehavior(),
      scrollAnalysis: this.analyzeScrollBehavior(),
      keystrokeAnalysis: this.analyzeKeystrokeBehavior(),
      sessionAnalysis: this.analyzeSessionBehavior()
    }

    const totalScore = (
      analysis.mouseAnalysis.score +
      analysis.clickAnalysis.score +
      analysis.scrollAnalysis.score +
      analysis.keystrokeAnalysis.score +
      analysis.sessionAnalysis.score
    ) / 5

    const suspiciousPatterns = [
      ...analysis.mouseAnalysis.patterns,
      ...analysis.clickAnalysis.patterns,
      ...analysis.scrollAnalysis.patterns,
      ...analysis.keystrokeAnalysis.patterns,
      ...analysis.sessionAnalysis.patterns
    ]

    const confidence = Math.max(0, Math.min(100, totalScore))

    return {
      isHuman: confidence > 60,
      confidence,
      suspiciousPatterns,
      riskLevel: confidence > 80 ? 'low' : confidence > 40 ? 'medium' : 'high'
    }
  }

  private analyzeMouseBehavior(): { score: number; patterns: string[] } {
    const patterns: string[] = []
    let score = 100

    // Check for robotic mouse movements
    if (this.behaviorData.mouseMovements.length > 0) {
      const velocities = this.behaviorData.mouseMovements.map(m => m.velocity)
      const avgVelocity = velocities.reduce((a, b) => a + b, 0) / velocities.length

      // Too consistent velocity suggests bot
      const velocityVariance = this.calculateVariance(velocities)
      if (velocityVariance < 0.1 && avgVelocity > 0) {
        patterns.push('Unnaturally consistent mouse velocity')
        score -= 40
      }

      // Too many perfectly straight movements
      const straightMovements = this.behaviorData.mouseMovements.filter((m, i) => {
        if (i === 0) return false
        const prev = this.behaviorData.mouseMovements[i - 1]
        const dx = m.x - prev.x
        const dy = m.y - prev.y
        return Math.abs(dx) > 0 && Math.abs(dy) < 2 // Horizontal movement only
      }).length

      if (straightMovements > this.behaviorData.mouseMovements.length * 0.3) {
        patterns.push('Excessive straight-line mouse movements')
        score -= 30
      }
    }

    return { score: Math.max(0, score), patterns }
  }

  private analyzeClickBehavior(): { score: number; patterns: string[] } {
    const patterns: string[] = []
    let score = 100

    if (this.behaviorData.clicks.length > 0) {
      // Too fast clicking suggests automation
      const clickTimes = this.behaviorData.clicks.map(c => c.timestamp)
      const avgTimeBetweenClicks = this.calculateAverageTimeBetween(clickTimes)

      if (avgTimeBetweenClicks < 100) { // Less than 100ms between clicks
        patterns.push('Unnaturally fast clicking pattern')
        score -= 50
      }

      // Perfect timing suggests bot
      const timeVariances = this.calculateTimeVariance(clickTimes)
      if (timeVariances < 0.1) {
        patterns.push('Robotically precise click timing')
        score -= 30
      }
    }

    return { score: Math.max(0, score), patterns }
  }

  private analyzeScrollBehavior(): { score: number; patterns: string[] } {
    const patterns: string[] = []
    let score = 100

    if (this.behaviorData.scrolls.length > 0) {
      // Check for unnatural scroll patterns
      const scrollVelocities = this.behaviorData.scrolls.map(s => s.velocity)
      const avgVelocity = scrollVelocities.reduce((a, b) => a + b, 0) / scrollVelocities.length

      // Too consistent scroll speed
      if (this.calculateVariance(scrollVelocities) < 0.2) {
        patterns.push('Unnaturally consistent scroll velocity')
        score -= 25
      }
    }

    return { score: Math.max(0, score), patterns }
  }

  private analyzeKeystrokeBehavior(): { score: number; patterns: string[] } {
    const patterns: string[] = []
    let score = 100

    if (this.behaviorData.keystrokes.length > 0) {
      const timeBetweenKeystrokes = this.behaviorData.keystrokes.map(k => k.timeBetweenKeystrokes)

      // Too consistent typing speed
      const avgTimeBetween = timeBetweenKeystrokes.reduce((a, b) => a + b, 0) / timeBetweenKeystrokes.length
      const timeVariance = this.calculateVariance(timeBetweenKeystrokes)

      if (timeVariance < 0.3 && avgTimeBetween < 200) {
        patterns.push('Robotically consistent typing rhythm')
        score -= 35
      }
    }

    return { score: Math.max(0, score), patterns }
  }

  private analyzeSessionBehavior(): { score: number; patterns: string[] } {
    const patterns: string[] = []
    let score = 100

    // Check session duration patterns
    if (this.behaviorData.sessionDuration > 0) {
      // Very short sessions with many actions suggest scraping
      if (this.behaviorData.sessionDuration < 30000 && // Less than 30 seconds
          this.behaviorData.clicks.length > 10) {
        patterns.push('Suspiciously short session with high activity')
        score -= 40
      }

      // Too many page views in short time
      if (this.behaviorData.sessionDuration < 60000 && // Less than 1 minute
          this.behaviorData.pageViews > 5) {
        patterns.push('Unusual page view frequency')
        score -= 30
      }
    }

    return { score: Math.max(0, score), patterns }
  }

  private calculateVariance(values: number[]): number {
    if (values.length === 0) return 0
    const mean = values.reduce((a, b) => a + b, 0) / values.length
    const squaredDiffs = values.map(value => Math.pow(value - mean, 2))
    return squaredDiffs.reduce((a, b) => a + b, 0) / values.length
  }

  private calculateAverageTimeBetween(timestamps: number[]): number {
    if (timestamps.length < 2) return 0

    const diffs = []
    for (let i = 1; i < timestamps.length; i++) {
      diffs.push(timestamps[i] - timestamps[i - 1])
    }

    return diffs.reduce((a, b) => a + b, 0) / diffs.length
  }

  private calculateTimeVariance(timestamps: number[]): number {
    const avgTime = this.calculateAverageTimeBetween(timestamps)
    if (avgTime === 0) return 0

    const diffs = []
    for (let i = 1; i < timestamps.length; i++) {
      diffs.push(Math.abs(timestamps[i] - timestamps[i - 1] - avgTime))
    }

    return diffs.reduce((a, b) => a + b, 0) / diffs.length / avgTime
  }
}

// Usage example
const behaviorAnalyzer = new BehaviorAnalyzer()

// After 30 seconds of user interaction, analyze behavior
setTimeout(() => {
  const score = behaviorAnalyzer.analyzeBehavior()
  console.log('Behavior analysis:', score)

  if (score.riskLevel === 'high') {
    // Trigger additional verification or rate limiting
    console.log('High risk behavior detected - implementing safeguards')
  }
}, 30000)

Practical Implementation Examples


Machine Learning Bot Detection


// Machine learning-based bot detection using TensorFlow.js
interface MLFeatures {
  canvasFingerprint: string
  webglFingerprint: string
  fontCount: number
  pluginCount: number
  avgMouseVelocity: number
  clickFrequency: number
  scrollVariability: number
  keystrokeConsistency: number
  sessionDuration: number
  pageViewRate: number
  timeBetweenActions: number[]
  requestRate: number
  endpointDiversity: number
  headerConsistency: number
}

class MLBotDetector {
  async predictBot(features: MLFeatures): Promise<boolean> {
    // Simplified ML prediction - in production use trained model
    const botScore = this.calculateBotScore(features)
    return botScore > 0.7
  }

  private calculateBotScore(features: MLFeatures): number {
    let score = 0

    // Browser fingerprinting score
    if (features.fontCount < 10) score += 0.3
    if (features.pluginCount === 0) score += 0.2

    // Behavioral analysis score
    if (features.avgMouseVelocity < 50) score += 0.3
    if (features.clickFrequency > 8) score += 0.2
    if (features.keystrokeConsistency > 0.9) score += 0.3

    // Session analysis score
    if (features.sessionDuration < 60 && features.pageViewRate > 3) score += 0.4

    return Math.min(1, score)
  }
}

}

}


### Advanced Machine Learning Bot Detection System

// Production-ready machine learning system for bot detection

interface BotDetectionFeatures {

// Browser and device characteristics

userAgent: string

screenResolution: string

timezone: string

language: string

platform: string

cookieEnabled: boolean

doNotTrack?: string


// Hardware and performance indicators

hardwareConcurrency: number

deviceMemory: number

maxTouchPoints: number


// Canvas and WebGL fingerprints

canvasFingerprint: string

webglFingerprint: string

audioFingerprint?: string


// Behavioral patterns

mouseMovementEntropy: number

clickTimingVariance: number

keystrokeRhythmConsistency: number

scrollBehaviorPattern: string


// Network and timing characteristics

requestIntervalVariance: number

sessionDuration: number

pageViewRate: number

endpointDiversity: number


// Header consistency and patterns

headerEntropy: number

acceptLanguageConsistency: number

referrerPattern: string


// Advanced indicators

automationToolsDetected: string[]

suspiciousHeaders: string[]

unusualProtocols: string[]

}


interface MLModelPrediction {

isBot: boolean

confidence: number // 0-100

botType?: 'scraper' | 'spammer' | 'credential_stuffer' | 'click_fraud' | 'unknown'

riskLevel: 'low' | 'medium' | 'high' | 'critical'

featureImportance: Record

modelVersion: string

predictionTimestamp: number

}


interface TrainingDataset {

features: BotDetectionFeatures

label: boolean // true for bot, false for human

metadata: {

source: string

timestamp: number

userId?: string

ip?: string

verificationMethod?: string

}

}


class AdvancedMLBotDetector {

private model: any = null // In production: TensorFlow.js model

private featureExtractor: FeatureExtractor

private modelVersion: string = '1.0.0'

private predictionCache: Map = new Map()

private trainingData: TrainingDataset[] = []


constructor() {

this.featureExtractor = new FeatureExtractor()

this.initializeModel()

this.loadTrainingData()

}


async predictBot(features: BotDetectionFeatures, useCache: boolean = true): Promise {

// Check cache first

const cacheKey = this.generateCacheKey(features)

if (useCache && this.predictionCache.has(cacheKey)) {

const cached = this.predictionCache.get(cacheKey)!

if (Date.now() - cached.predictionTimestamp < 5 60 1000) { // 5 minutes cache

return cached

}

}


try {

// Extract normalized features for ML model

const normalizedFeatures = await this.featureExtractor.normalizeFeatures(features)


// Run prediction

const prediction = await this.runModelPrediction(normalizedFeatures)


// Cache result

this.predictionCache.set(cacheKey, prediction)


return prediction


} catch (error) {

console.error('ML prediction failed:', error)

// Fallback to rule-based detection

return this.fallbackPrediction(features)

}

}


private async initializeModel(): Promise {

// In production, load pre-trained TensorFlow.js model

// For demo, we'll simulate model initialization


console.log('Initializing ML bot detection model...')


// Simulate model loading

await new Promise(resolve => setTimeout(resolve, 1000))


this.model = {

predict: async (features: number[]) => {

// Simplified prediction logic for demo

const botScore = this.calculateSimpleBotScore(features)

return {

isBot: botScore > 0.7,

confidence: Math.min(100, botScore * 100),

botType: this.classifyBotType(botScore, features),

riskLevel: this.calculateRiskLevel(botScore)

}

}

}


console.log('ML model initialized successfully')

}


private calculateSimpleBotScore(features: number[]): number {

// Simplified scoring algorithm

let score = 0


// Browser consistency indicators (lower is more suspicious)

if (features[0] < 0.3) score += 0.2 // Low canvas entropy

if (features[1] < 0.2) score += 0.3 // Low WebGL entropy

if (features[2] < 0.1) score += 0.2 // Very few fonts


// Behavioral indicators

if (features[3] < 0.2) score += 0.3 // Low mouse movement entropy

if (features[4] > 0.8) score += 0.2 // High click timing consistency

if (features[5] < 0.3) score += 0.2 // Short session duration


// Network indicators

if (features[6] < 0.2) score += 0.3 // Low request interval variance

if (features[7] > 0.8) score += 0.2 // High page view rate


return Math.min(1, Math.max(0, score))

}


private classifyBotType(score: number, features: number[]): MLModelPrediction['botType'] {

if (score > 0.9) {

if (features[5] < 0.2 && features[6] < 0.3) return 'credential_stuffer'

if (features[7] > 0.8 && features[8] > 0.7) return 'scraper'

if (features[9] > 0.6) return 'click_fraud'

return 'spammer'

}

return 'unknown'

}


private calculateRiskLevel(score: number): MLModelPrediction['riskLevel'] {

if (score > 0.9) return 'critical'

if (score > 0.7) return 'high'

if (score > 0.5) return 'medium'

return 'low'

}


private async runModelPrediction(features: number[]): Promise {

if (!this.model) {

throw new Error('Model not initialized')

}


const rawPrediction = await this.model.predict(features)


return {

...rawPrediction,

featureImportance: this.calculateFeatureImportance(features),

modelVersion: this.modelVersion,

predictionTimestamp: Date.now()

}

}


private calculateFeatureImportance(features: number[]): Record {

// Simplified feature importance calculation

const importance: Record = {}


// Weight different feature categories

importance['browser_fingerprint'] = Math.abs(features[0] 0.3 + features[1] 0.2 + features[2] * 0.1)

importance['behavioral_patterns'] = Math.abs(features[3] 0.25 + features[4] 0.2 + features[5] * 0.15)

importance['network_characteristics'] = Math.abs(features[6] 0.2 + features[7] 0.15 + features[8] * 0.1)

importance['header_analysis'] = Math.abs(features[9] 0.1 + features[10] 0.05)


return importance

}


private fallbackPrediction(features: BotDetectionFeatures): MLModelPrediction {

// Rule-based fallback when ML fails

let score = 0

const reasons: string[] = []


// Browser fingerprint rules

if (features.fontCount < 10) {

score += 30

reasons.push('Limited font support')

}


if (features.pluginCount === 0) {

score += 20

reasons.push('No browser plugins detected')

}


// Behavioral rules

if (features.mouseMovementEntropy < 0.3) {

score += 25

reasons.push('Low mouse movement entropy')

}


if (features.keystrokeRhythmConsistency > 0.9) {

score += 20

reasons.push('Highly consistent typing rhythm')

}


// Session rules

if (features.sessionDuration < 60 && features.pageViewRate > 3) {

score += 30

reasons.push('Suspicious session pattern')

}


const confidence = Math.min(100, score)


return {

isBot: confidence > 60,

confidence,

botType: confidence > 80 ? 'unknown' : undefined,

riskLevel: confidence > 80 ? 'high' : confidence > 50 ? 'medium' : 'low',

featureImportance: {},

modelVersion: 'fallback-1.0',

predictionTimestamp: Date.now()

}

}


private generateCacheKey(features: BotDetectionFeatures): string {

// Create deterministic cache key from features

const keyData = ${features.canvasFingerprint}-${features.webglFingerprint}-${features.sessionDuration}-${features.mouseMovementEntropy}

return btoa(keyData).slice(0, 16) // Short hash for cache key

}


// Training data management

async addTrainingExample(features: BotDetectionFeatures, isBot: boolean, metadata: any): Promise {

const dataset: TrainingDataset = {

features,

label: isBot,

metadata: {

source: 'manual_verification',

timestamp: Date.now(),

...metadata

}

}


this.trainingData.push(dataset)


// In production, save to persistent storage

await this.saveTrainingData()

}


private async loadTrainingData(): Promise {

// In production, load from database or file system

console.log('Loading training data...')

// For demo, we'll use empty dataset

}


private async saveTrainingData(): Promise {

// In production, save to database

console.log(Saved ${this.trainingData.length} training examples)

}


// Model retraining

async retrainModel(newData?: TrainingDataset[]): Promise {

const dataToUse = newData || this.trainingData


if (dataToUse.length < 100) {

console.log('Insufficient training data for retraining')

return

}


console.log('Starting model retraining...')


// In production, implement actual model retraining

// For demo, simulate retraining

await new Promise(resolve => setTimeout(resolve, 5000))


this.modelVersion = 2.0.${Date.now()}

console.log('Model retraining completed')

}


// Performance monitoring

getModelPerformance(): {

totalPredictions: number

accuracy: number

precision: number

recall: number

f1Score: number

} {

// In production, calculate from validation data

return {

totalPredictions: this.predictionCache.size,

accuracy: 0.94,

precision: 0.91,

recall: 0.89,

f1Score: 0.90

}

}

}


class FeatureExtractor {

async normalizeFeatures(features: BotDetectionFeatures): Promise {

// Normalize features to 0-1 range for ML model

return [

this.normalizeCanvasEntropy(features.canvasFingerprint),

this.normalizeWebGLEntropy(features.webglFingerprint),

this.normalizeFontCount(features.fontCount),

this.normalizeEntropy(features.mouseMovementEntropy),

this.normalizeConsistency(features.clickTimingVariance),

this.normalizeDuration(features.sessionDuration),

this.normalizeVariance(features.requestIntervalVariance),

this.normalizeRate(features.pageViewRate),

this.normalizeDiversity(features.endpointDiversity),

this.normalizeEntropy(features.headerEntropy),

this.normalizeConsistency(features.acceptLanguageConsistency)

]

}


private normalizeCanvasEntropy(fingerprint: string): number {

// Calculate entropy of canvas fingerprint

const entropy = this.calculateEntropy(fingerprint)

return Math.min(1, entropy / 4.5) // Normalize to 0-1

}


private normalizeWebGLEntropy(fingerprint: string): number {

const entropy = this.calculateEntropy(fingerprint)

return Math.min(1, entropy / 3.0)

}


private normalizeFontCount(count: number): number {

return Math.min(1, count / 200) // Normalize to typical range

}


private normalizeEntropy(entropy: number): number {

return Math.min(1, entropy / 8.0)

}


private normalizeConsistency(consistency: number): number {

return consistency // Already 0-1

}


private normalizeDuration(duration: number): number {

return Math.min(1, duration / 300) // Normalize to 5 minutes

}


private normalizeVariance(variance: number): number {

return Math.min(1, variance / 1000) // Normalize variance

}


private normalizeRate(rate: number): number {

return Math.min(1, rate / 10) // Normalize page views per minute

}


private normalizeDiversity(diversity: number): number {

return diversity // Already 0-1

}


private calculateEntropy(str: string): number {

const frequencies: Record = {}


for (const char of str) {

frequencies[char] = (frequencies[char] || 0) + 1

}


let entropy = 0

const length = str.length


for (const count of Object.values(frequencies)) {

const probability = count / length

entropy -= probability * Math.log2(probability)

}


return entropy

}

}


// Integration with Express.js middleware

class BotDetectionMiddleware {

private mlDetector: AdvancedMLBotDetector


constructor() {

this.mlDetector = new AdvancedMLBotDetector()

}


async detectBot(req: any, res: any, next: any): Promise {

try {

// Collect features from request

const features = await this.extractFeaturesFromRequest(req)


// Run ML prediction

const prediction = await this.mlDetector.predictBot(features)


// Add detection results to request

req.botDetection = {

prediction,

features,

timestamp: Date.now()

}


// Set response headers for client-side detection

res.set({

'X-Bot-Score': prediction.confidence.toString(),

'X-Bot-Type': prediction.botType || 'unknown',

'X-Risk-Level': prediction.riskLevel

})


// Apply mitigation based on risk level

if (prediction.riskLevel === 'critical') {

return res.status(429).json({

error: 'Request blocked',

message: 'Suspicious activity detected',

retryAfter: 300

})

}


if (prediction.riskLevel === 'high') {

// Require additional verification

req.requiresVerification = true

console.warn(High-risk request detected from IP: ${req.ip})

}


next()


} catch (error) {

console.error('Bot detection middleware error:', error)

// Continue without blocking on detection failure

next()

}

}


private async extractFeaturesFromRequest(req: any): Promise {

return {

userAgent: req.get('User-Agent') || '',

screenResolution: req.get('X-Screen-Resolution') || 'unknown',

timezone: req.get('X-Timezone') || 'unknown',

language: req.get('Accept-Language')?.split(',')[0] || 'unknown',

platform: req.get('X-Platform') || 'unknown',

cookieEnabled: req.get('X-Cookie-Enabled') === 'true',

doNotTrack: req.get('DNT'),

hardwareConcurrency: parseInt(req.get('X-Hardware-Concurrency')) || 0,

deviceMemory: parseFloat(req.get('X-Device-Memory')) || 0,

maxTouchPoints: parseInt(req.get('X-Max-Touch-Points')) || 0,

canvasFingerprint: req.get('X-Canvas-Fingerprint') || '',

webglFingerprint: req.get('X-WebGL-Fingerprint') || '',

mouseMovementEntropy: parseFloat(req.get('X-Mouse-Entropy')) || 0,

clickTimingVariance: parseFloat(req.get('X-Click-Variance')) || 0,

keystrokeRhythmConsistency: parseFloat(req.get('X-Keystroke-Consistency')) || 0,

scrollBehaviorPattern: req.get('X-Scroll-Pattern') || 'unknown',

requestIntervalVariance: parseFloat(req.get('X-Request-Variance')) || 0,

sessionDuration: parseFloat(req.get('X-Session-Duration')) || 0,

pageViewRate: parseFloat(req.get('X-Page-View-Rate')) || 0,

endpointDiversity: parseFloat(req.get('X-Endpoint-Diversity')) || 0,

headerEntropy: parseFloat(req.get('X-Header-Entropy')) || 0,

acceptLanguageConsistency: parseFloat(req.get('X-Language-Consistency')) || 0,

referrerPattern: req.get('X-Referrer-Pattern') || 'unknown',

automationToolsDetected: (req.get('X-Automation-Tools') || '').split(','),

suspiciousHeaders: (req.get('X-Suspicious-Headers') || '').split(','),

unusualProtocols: (req.get('X-Unusual-Protocols') || '').split(',')

}

}

}


// Initialize bot detection system

const botDetectionMiddleware = new BotDetectionMiddleware()


// Apply to API routes

app.use('/api', botDetectionMiddleware.detectBot)


// Bot detection analysis endpoint

app.post('/api/analyze-bot-risk', async (req, res) => {

try {

const { features, useCache } = req.body


if (!features) {

return res.status(400).json({ error: 'Features required' })

}


const prediction = await botDetectionMiddleware['mlDetector'].predictBot(features, useCache)


res.json({

prediction,

features,

timestamp: new Date().toISOString()

})


} catch (error) {

console.error('Bot analysis error:', error)

res.status(500).json({ error: 'Analysis failed' })

}

})


// Model performance endpoint

app.get('/api/bot-detection/performance', (req, res) => {

const performance = botDetectionMiddleware['mlDetector'].getModelPerformance()


res.json({

performance,

modelVersion: botDetectionMiddleware['mlDetector']['modelVersion'],

timestamp: new Date().toISOString()

})

})


// Training data submission endpoint

app.post('/api/bot-detection/training', async (req, res) => {

try {

const { features, isBot, metadata } = req.body


if (!features || typeof isBot !== 'boolean') {

return res.status(400).json({ error: 'Features and isBot label required' })

}


await botDetectionMiddleware['mlDetector'].addTrainingExample(features, isBot, metadata)


res.json({

message: 'Training example added successfully',

timestamp: new Date().toISOString()

})


} catch (error) {

console.error('Training data submission error:', error)

res.status(500).json({ error: 'Training data submission failed' })

}

})


// Manual model retraining trigger

app.post('/api/bot-detection/retrain', async (req, res) => {

try {

await botDetectionMiddleware['mlDetector'].retrainModel()


res.json({

message: 'Model retraining completed',

newVersion: botDetectionMiddleware['mlDetector']['modelVersion'],

timestamp: new Date().toISOString()

})


} catch (error) {

console.error('Model retraining error:', error)

res.status(500).json({ error: 'Model retraining failed' })

}

})


// Clear prediction cache

app.post('/api/bot-detection/clear-cache', (req, res) => {

botDetectionMiddleware['mlDetector']['predictionCache'].clear()


res.json({

message: 'Prediction cache cleared',

timestamp: new Date().toISOString()

})

})


console.log('Advanced ML bot detection system initialized')


### Real-Time Traffic Analysis Engine

// Real-time traffic analysis for bot detection and behavioral insights

interface TrafficEvent {

id: string

timestamp: number

ip: string

userAgent: string

endpoint: string

method: string

statusCode: number

responseTime: number

requestSize: number

responseSize: number

headers: Record

fingerprint?: string

sessionId?: string

userId?: string

}


interface TrafficPattern {

id: string

patternType: 'burst' | 'periodic' | 'sequential' | 'random' | 'suspicious'

confidence: number

characteristics: {

requestRate: number // requests per minute

endpointDistribution: Record

timeWindow: number // minutes

uniqueIPs: number

avgResponseTime: number

errorRate: number

}

affectedIPs: string[]

firstSeen: number

lastSeen: number

riskScore: number

recommendations: string[]

}


interface BehavioralProfile {

ip: string

sessionId?: string

userAgent: string

fingerprint?: string

behaviorMetrics: {

avgRequestInterval: number

endpointDiversity: number

errorRate: number

successRate: number

sessionDuration: number

pageViews: number

timeBetweenActions: number[]

}

patternHistory: string[]

riskScore: number

lastUpdated: number

}


class RealTimeTrafficAnalyzer {

private eventBuffer: TrafficEvent[] = []

private activePatterns: Map = new Map()

private behavioralProfiles: Map = new Map()

private patternDetectors: PatternDetector[] = []

private maxBufferSize: number = 10000


constructor() {

this.initializePatternDetectors()

this.startRealTimeAnalysis()

}


async analyzeTrafficEvent(event: TrafficEvent): Promise<{

patterns: TrafficPattern[]

behavioralUpdate: boolean

riskAssessment: {

level: 'low' | 'medium' | 'high' | 'critical'

score: number

reasons: string[]

}

recommendations: string[]

}> {

// Add event to buffer

this.addToBuffer(event)


// Update behavioral profile

const behavioralUpdate = await this.updateBehavioralProfile(event)


// Detect patterns

const patterns = await this.detectPatterns(event)


// Assess risk

const riskAssessment = this.assessRisk(event, patterns, behavioralUpdate)


// Generate recommendations

const recommendations = this.generateRecommendations(riskAssessment, patterns)


return {

patterns,

behavioralUpdate,

riskAssessment,

recommendations

}

}


private addToBuffer(event: TrafficEvent): void {

this.eventBuffer.push(event)


// Maintain buffer size

if (this.eventBuffer.length > this.maxBufferSize) {

this.eventBuffer = this.eventBuffer.slice(-this.maxBufferSize)

}


// Clean old events (older than 1 hour)

const oneHourAgo = Date.now() - 60 60 1000

this.eventBuffer = this.eventBuffer.filter(e => e.timestamp > oneHourAgo)

}


private async updateBehavioralProfile(event: TrafficEvent): Promise {

const profileKey = event.sessionId || event.ip

let profile = this.behavioralProfiles.get(profileKey)


if (!profile) {

profile = {

ip: event.ip,

sessionId: event.sessionId,

userAgent: event.userAgent,

fingerprint: event.fingerprint,

behaviorMetrics: {

avgRequestInterval: 0,

endpointDiversity: 0,

errorRate: 0,

successRate: 0,

sessionDuration: 0,

pageViews: 0,

timeBetweenActions: []

},

patternHistory: [],

riskScore: 0,

lastUpdated: Date.now()

}

this.behavioralProfiles.set(profileKey, profile)

}


// Update metrics

await this.updateProfileMetrics(profile, event)


// Calculate new risk score

const oldRiskScore = profile.riskScore

profile.riskScore = this.calculateProfileRiskScore(profile)


// Check if risk level changed significantly

const riskChanged = Math.abs(profile.riskScore - oldRiskScore) > 20


profile.lastUpdated = Date.now()

this.behavioralProfiles.set(profileKey, profile)


return riskChanged

}


private async updateProfileMetrics(profile: BehavioralProfile, event: TrafficEvent): Promise {

const now = Date.now()


// Update request timing

if (profile.behaviorMetrics.timeBetweenActions.length > 0) {

const lastAction = Math.max(...profile.behaviorMetrics.timeBetweenActions)

const timeSinceLastAction = now - lastAction


if (timeSinceLastAction > 1000) { // Only track significant intervals

profile.behaviorMetrics.timeBetweenActions.push(now)

}

} else {

profile.behaviorMetrics.timeBetweenActions.push(now)

}


// Keep only recent intervals (last 10 minutes)

const tenMinutesAgo = now - 10 60 1000

profile.behaviorMetrics.timeBetweenActions = profile.behaviorMetrics.timeBetweenActions.filter(

t => t > tenMinutesAgo

)


// Update average request interval

if (profile.behaviorMetrics.timeBetweenActions.length > 1) {

const intervals = []

for (let i = 1; i < profile.behaviorMetrics.timeBetweenActions.length; i++) {

intervals.push(

profile.behaviorMetrics.timeBetweenActions[i] - profile.behaviorMetrics.timeBetweenActions[i - 1]

)

}

profile.behaviorMetrics.avgRequestInterval = intervals.reduce((a, b) => a + b, 0) / intervals.length

}


// Update endpoint diversity

profile.behaviorMetrics.endpointDiversity = this.calculateEndpointDiversity(profileKey)


// Update error rate

if (event.statusCode >= 400) {

profile.behaviorMetrics.errorRate = this.updateErrorRate(profile, true)

} else {

profile.behaviorMetrics.errorRate = this.updateErrorRate(profile, false)

}


// Update success rate

if (event.statusCode < 400) {

profile.behaviorMetrics.successRate = this.updateSuccessRate(profile, true)

} else {

profile.behaviorMetrics.successRate = this.updateSuccessRate(profile, false)

}


// Update session duration

if (profile.behaviorMetrics.timeBetweenActions.length > 0) {

const firstAction = Math.min(...profile.behaviorMetrics.timeBetweenActions)

profile.behaviorMetrics.sessionDuration = now - firstAction

}


// Update page views

profile.behaviorMetrics.pageViews++

}


private calculateEndpointDiversity(profileKey: string): number {

// Get recent events for this profile

const recentEvents = this.eventBuffer.filter(e => {

const key = e.sessionId || e.ip

return key === profileKey && e.timestamp > Date.now() - 10 60 1000

})


const endpoints = new Set(recentEvents.map(e => e.endpoint))

const totalRequests = recentEvents.length


// Calculate diversity as unique endpoints / total requests

return totalRequests > 0 ? endpoints.size / totalRequests : 0

}


private updateErrorRate(profile: BehavioralProfile, isError: boolean): number {

// Simple exponential moving average for error rate

const alpha = 0.1

const currentRate = profile.behaviorMetrics.errorRate


if (isError) {

return currentRate (1 - alpha) + alpha 1

} else {

return currentRate * (1 - alpha)

}

}


private updateSuccessRate(profile: BehavioralProfile, isSuccess: boolean): number {

const alpha = 0.1

const currentRate = profile.behaviorMetrics.successRate


if (isSuccess) {

return currentRate (1 - alpha) + alpha 1

} else {

return currentRate * (1 - alpha)

}

}


private calculateProfileRiskScore(profile: BehavioralProfile): number {

let score = 0


// High error rate suggests bot activity

if (profile.behaviorMetrics.errorRate > 0.3) {

score += 30

}


// Very low request interval suggests automation

if (profile.behaviorMetrics.avgRequestInterval < 100) {

score += 25

}


// Low endpoint diversity suggests scraping

if (profile.behaviorMetrics.endpointDiversity < 0.2) {

score += 20

}


// Very short session with many requests suggests bot

if (profile.behaviorMetrics.sessionDuration < 60000 && profile.behaviorMetrics.pageViews > 10) {

score += 25

}


// Consistent timing patterns suggest automation

if (profile.behaviorMetrics.timeBetweenActions.length > 5) {

const variance = this.calculateVariance(profile.behaviorMetrics.timeBetweenActions)

if (variance < 0.2) {

score += 15

}

}


return Math.min(100, score)

}


private calculateVariance(values: number[]): number {

if (values.length === 0) return 0

const mean = values.reduce((a, b) => a + b, 0) / values.length

const squaredDiffs = values.map(value => Math.pow(value - mean, 2))

return squaredDiffs.reduce((a, b) => a + b, 0) / values.length

}


private async detectPatterns(event: TrafficEvent): Promise {

const newPatterns: TrafficPattern[] = []


for (const detector of this.patternDetectors) {

const pattern = await detector.detect(event, this.eventBuffer)

if (pattern) {

newPatterns.push(pattern)

this.activePatterns.set(pattern.id, pattern)

}

}


return newPatterns

}


private initializePatternDetectors(): void {

this.patternDetectors = [

new BurstPatternDetector(),

new PeriodicPatternDetector(),

new SequentialPatternDetector(),

new SuspiciousPatternDetector()

]

}


private assessRisk(

event: TrafficEvent,

patterns: TrafficPattern[],

behavioralUpdate: boolean

): { level: 'low' | 'medium' | 'high' | 'critical'; score: number; reasons: string[] } {

let score = 0

const reasons: string[] = []


// Check for active suspicious patterns

const suspiciousPatterns = patterns.filter(p => p.riskScore > 70)

if (suspiciousPatterns.length > 0) {

score += 40

reasons.push(${suspiciousPatterns.length} suspicious traffic patterns detected)

}


// Check behavioral profile risk

const profileKey = event.sessionId || event.ip

const profile = this.behavioralProfiles.get(profileKey)

if (profile && profile.riskScore > 60) {

score += profile.riskScore * 0.3

reasons.push('High-risk behavioral profile')

}


// Check request characteristics

if (event.responseTime < 50 && event.requestSize < 100) {

score += 10

reasons.push('Unusually fast request')

}


if (event.statusCode >= 500) {

score += 15

reasons.push('Server error response')

}


// Check for automation indicators in headers

const suspiciousHeaders = this.detectSuspiciousHeaders(event.headers)

if (suspiciousHeaders.length > 0) {

score += 20

reasons.push('Suspicious request headers')

}


const finalScore = Math.min(100, score)


let level: 'low' | 'medium' | 'high' | 'critical'

if (finalScore > 80) level = 'critical'

else if (finalScore > 60) level = 'high'

else if (finalScore > 40) level = 'medium'

else level = 'low'


return { level, score: finalScore, reasons }

}


private detectSuspiciousHeaders(headers: Record): string[] {

const suspicious: string[] = []


// Check for automation tool headers

const automationHeaders = [

'x-automation-tool',

'x-scraper',

'x-bot',

'x-crawler',

'user-agent-automation'

]


for (const header of automationHeaders) {

if (headers[header.toLowerCase()]) {

suspicious.push(header)

}

}


// Check for unusual header patterns

if (headers['accept-language']?.includes('*')) {

suspicious.push('wildcard-accept-language')

}


if (headers['cache-control']?.includes('no-cache') && headers['pragma']?.includes('no-cache')) {

suspicious.push('aggressive-cache-control')

}


return suspicious

}


private generateRecommendations(

riskAssessment: any,

patterns: TrafficPattern[]

): string[] {

const recommendations: string[] = []


if (riskAssessment.level === 'critical') {

recommendations.push('Block IP address immediately')

recommendations.push('Require CAPTCHA verification for session')

recommendations.push('Log incident for security team review')

}


if (riskAssessment.level === 'high') {

recommendations.push('Implement rate limiting')

recommendations.push('Require additional authentication')

recommendations.push('Monitor session closely')

}


// Pattern-specific recommendations

for (const pattern of patterns) {

if (pattern.patternType === 'burst') {

recommendations.push('Implement burst detection rate limiting')

}


if (pattern.patternType === 'periodic') {

recommendations.push('Add timing-based access controls')

}


if (pattern.patternType === 'suspicious') {

recommendations.push('Require manual review of affected IPs')

}

}


return recommendations

}


private startRealTimeAnalysis(): void {

// Process events every 10 seconds

setInterval(async () => {

await this.processEventBuffer()

}, 10000)


// Clean up old patterns every 5 minutes

setInterval(() => {

this.cleanupOldPatterns()

}, 5 60 1000)


// Clean up old profiles every hour

setInterval(() => {

this.cleanupOldProfiles()

}, 60 60 1000)

}


private async processEventBuffer(): Promise {

if (this.eventBuffer.length === 0) return


// Process recent events for pattern detection

const recentEvents = this.eventBuffer.slice(-1000) // Last 1000 events


for (const event of recentEvents) {

await this.analyzeTrafficEvent(event)

}

}


private cleanupOldPatterns(): void {

const oneHourAgo = Date.now() - 60 60 1000


for (const [id, pattern] of this.activePatterns.entries()) {

if (pattern.lastSeen < oneHourAgo) {

this.activePatterns.delete(id)

}

}

}


private cleanupOldProfiles(): void {

const oneHourAgo = Date.now() - 60 60 1000


for (const [key, profile] of this.behavioralProfiles.entries()) {

if (profile.lastUpdated < oneHourAgo) {

this.behavioralProfiles.delete(key)

}

}

}


getActivePatterns(): TrafficPattern[] {

return Array.from(this.activePatterns.values())

}


getBehavioralProfile(key: string): BehavioralProfile | null {

return this.behavioralProfiles.get(key) || null

}


getTrafficAnalytics(): {

totalEvents: number

activePatterns: number

highRiskProfiles: number

averageRiskScore: number

} {

const profiles = Array.from(this.behavioralProfiles.values())

const highRiskProfiles = profiles.filter(p => p.riskScore > 60).length

const averageRiskScore = profiles.length > 0

? profiles.reduce((sum, p) => sum + p.riskScore, 0) / profiles.length

: 0


return {

totalEvents: this.eventBuffer.length,

activePatterns: this.activePatterns.size,

highRiskProfiles,

averageRiskScore

}

}

}


// Pattern detector base class

abstract class PatternDetector {

abstract detect(event: TrafficEvent, buffer: TrafficEvent[]): Promise

}


class BurstPatternDetector extends PatternDetector {

async detect(event: TrafficEvent, buffer: TrafficEvent[]): Promise {

// Detect burst patterns (many requests from same IP in short time)

const ipEvents = buffer.filter(e => e.ip === event.ip)

const recentIPEvents = ipEvents.filter(e => e.timestamp > Date.now() - 5 60 1000) // Last 5 minutes


if (recentIPEvents.length > 50) { // More than 50 requests in 5 minutes

return {

id: burst-${event.ip}-${Date.now()},

patternType: 'burst',

confidence: Math.min(100, (recentIPEvents.length / 50) * 50),

characteristics: {

requestRate: recentIPEvents.length / 5, // per minute

endpointDistribution: this.calculateEndpointDistribution(recentIPEvents),

timeWindow: 5,

uniqueIPs: 1,

avgResponseTime: recentIPEvents.reduce((sum, e) => sum + e.responseTime, 0) / recentIPEvents.length,

errorRate: recentIPEvents.filter(e => e.statusCode >= 400).length / recentIPEvents.length

},

affectedIPs: [event.ip],

firstSeen: Math.min(...recentIPEvents.map(e => e.timestamp)),

lastSeen: Math.max(...recentIPEvents.map(e => e.timestamp)),

riskScore: Math.min(100, recentIPEvents.length * 2),

recommendations: [

'Implement IP-based rate limiting',

'Require CAPTCHA verification',

'Monitor for distributed attacks'

]

}

}


return null

}


private calculateEndpointDistribution(events: TrafficEvent[]): Record {

const distribution: Record = {}


for (const event of events) {

distribution[event.endpoint] = (distribution[event.endpoint] || 0) + 1

}


// Convert to percentages

const total = events.length

for (const endpoint in distribution) {

distribution[endpoint] = distribution[endpoint] / total

}


return distribution

}

}


class PeriodicPatternDetector extends PatternDetector {

async detect(event: TrafficEvent, buffer: TrafficEvent[]): Promise {

// Detect periodic patterns (regular intervals between requests)

const ipEvents = buffer.filter(e => e.ip === event.ip)

const recentIPEvents = ipEvents.filter(e => e.timestamp > Date.now() - 10 60 1000) // Last 10 minutes


if (recentIPEvents.length > 10) {

const intervals = []


for (let i = 1; i < recentIPEvents.length; i++) {

intervals.push(recentIPEvents[i].timestamp - recentIPEvents[i - 1].timestamp)

}


// Check for periodic pattern (low variance in intervals)

const avgInterval = intervals.reduce((a, b) => a + b, 0) / intervals.length

const variance = this.calculateVariance(intervals)


if (avgInterval > 5000 && variance / avgInterval < 0.3) { // Periodic with low variance

return {

id: periodic-${event.ip}-${Date.now()},

patternType: 'periodic',

confidence: Math.min(100, (1 - variance / avgInterval) * 100),

characteristics: {

requestRate: 60 / (avgInterval / 1000), // per minute

endpointDistribution: this.calculateEndpointDistribution(recentIPEvents),

timeWindow: 10,

uniqueIPs: 1,

avgResponseTime: recentIPEvents.reduce((sum, e) => sum + e.responseTime, 0) / recentIPEvents.length,

errorRate: recentIPEvents.filter(e => e.statusCode >= 400).length / recentIPEvents.length

},

affectedIPs: [event.ip],

firstSeen: Math.min(...recentIPEvents.map(e => e.timestamp)),

lastSeen: Math.max(...recentIPEvents.map(e => e.timestamp)),

riskScore: Math.min(100, (1 - variance / avgInterval) * 80),

recommendations: [

'Implement time-based access controls',

'Add random delays to prevent timing attacks',

'Monitor for coordinated bot networks'

]

}

}

}


return null

}


private calculateVariance(values: number[]): number {

if (values.length === 0) return 0

const mean = values.reduce((a, b) => a + b, 0) / values.length

const squaredDiffs = values.map(value => Math.pow(value - mean, 2))

return squaredDiffs.reduce((a, b) => a + b, 0) / values.length

}


private calculateEndpointDistribution(events: TrafficEvent[]): Record {

const distribution: Record = {}


for (const event of events) {

distribution[event.endpoint] = (distribution[event.endpoint] || 0) + 1

}


const total = events.length

for (const endpoint in distribution) {

distribution[endpoint] = distribution[endpoint] / total

}


return distribution

}

}


class SequentialPatternDetector extends PatternDetector {

async detect(event: TrafficEvent, buffer: TrafficEvent[]): Promise {

// Detect sequential patterns (predictable endpoint access patterns)

const recentEvents = buffer.filter(e => e.timestamp > Date.now() - 5 60 1000)


if (recentEvents.length > 20) {

const endpointSequence = recentEvents.map(e => e.endpoint)

const uniqueEndpoints = [...new Set(endpointSequence)]


// Check for repetitive sequential patterns

if (uniqueEndpoints.length < 5 && this.detectRepetitivePattern(endpointSequence)) {

return {

id: sequential-${Date.now()},

patternType: 'sequential',

confidence: 75,

characteristics: {

requestRate: recentEvents.length / 5,

endpointDistribution: this.calculateEndpointDistribution(recentEvents),

timeWindow: 5,

uniqueIPs: new Set(recentEvents.map(e => e.ip)).size,

avgResponseTime: recentEvents.reduce((sum, e) => sum + e.responseTime, 0) / recentEvents.length,

errorRate: recentEvents.filter(e => e.statusCode >= 400).length / recentEvents.length

},

affectedIPs: [...new Set(recentEvents.map(e => e.ip))],

firstSeen: Math.min(...recentEvents.map(e => e.timestamp)),

lastSeen: Math.max(...recentEvents.map(e => e.timestamp)),

riskScore: 60,

recommendations: [

'Implement endpoint access pattern detection',

'Add sequence-based rate limiting',

'Monitor for data scraping activities'

]

}

}

}


return null

}


private detectRepetitivePattern(sequence: string[]): boolean {

if (sequence.length < 10) return false


// Check for repeating patterns (e.g., A-B-C-A-B-C)

for (let patternLength = 3; patternLength <= 6; patternLength++) {

const firstPart = sequence.slice(0, patternLength)

const secondPart = sequence.slice(patternLength, patternLength * 2)


if (firstPart.every((item, index) => item === secondPart[index])) {

return true

}

}


return false

}


private calculateEndpointDistribution(events: TrafficEvent[]): Record {

const distribution: Record = {}


for (const event of events) {

distribution[event.endpoint] = (distribution[event.endpoint] || 0) + 1

}


const total = events.length

for (const endpoint in distribution) {

distribution[endpoint] = distribution[endpoint] / total

}


return distribution

}

}


class SuspiciousPatternDetector extends PatternDetector {

async detect(event: TrafficEvent, buffer: TrafficEvent[]): Promise {

// Detect various suspicious patterns

let riskScore = 0

const reasons: string[] = []


// Check for suspicious user agents

const suspiciousUserAgents = ['bot', 'crawler', 'scraper', 'spider', 'automation']

if (suspiciousUserAgents.some(term => event.userAgent.toLowerCase().includes(term))) {

riskScore += 40

reasons.push('Suspicious user agent')

}


// Check for unusual request patterns

if (event.requestSize > 10000 && event.responseSize < 1000) {

riskScore += 30

reasons.push('Unusual request/response size ratio')

}


// Check for rapid endpoint switching

const ipEvents = buffer.filter(e => e.ip === event.ip)

const recentIPEvents = ipEvents.filter(e => e.timestamp > Date.now() - 2 60 1000)


if (recentIPEvents.length > 20) {

const uniqueEndpoints = new Set(recentIPEvents.map(e => e.endpoint))

const endpointSwitchRate = uniqueEndpoints.size / recentIPEvents.length


if (endpointSwitchRate > 0.8) {

riskScore += 25

reasons.push('Rapid endpoint switching')

}

}


// Check for consistent error patterns

const errorEvents = recentIPEvents.filter(e => e.statusCode >= 400)

if (errorEvents.length > 10 && errorEvents.length / recentIPEvents.length > 0.5) {

riskScore += 20

reasons.push('High error rate pattern')

}


if (riskScore > 60) {

return {

id: suspicious-${event.ip}-${Date.now()},

patternType: 'suspicious',

confidence: Math.min(100, riskScore),

characteristics: {

requestRate: recentIPEvents.length / 2,

endpointDistribution: this.calculateEndpointDistribution(recentIPEvents),

timeWindow: 2,

uniqueIPs: 1,

avgResponseTime: recentIPEvents.reduce((sum, e) => sum + e.responseTime, 0) / recentIPEvents.length,

errorRate: errorEvents.length / recentIPEvents.length

},

affectedIPs: [event.ip],

firstSeen: Math.min(...recentIPEvents.map(e => e.timestamp)),

lastSeen: Math.max(...recentIPEvents.map(e => e.timestamp)),

riskScore,

recommendations: [

'Require manual verification',

'Implement stricter rate limiting',

'Log for security team review',

'Consider IP blocking'

]

}

}


return null

}


private calculateEndpointDistribution(events: TrafficEvent[]): Record {

const distribution: Record = {}


for (const event of events) {

distribution[event.endpoint] = (distribution[event.endpoint] || 0) + 1

}


const total = events.length

for (const endpoint in distribution) {

distribution[endpoint] = distribution[endpoint] / total

}


return distribution

}

}


// Initialize traffic analyzer

const trafficAnalyzer = new RealTimeTrafficAnalyzer()


// Traffic analysis middleware

const trafficAnalysisMiddleware = async (req: any, res: any, next: any) => {

const startTime = Date.now()


// Capture response data

const originalSend = res.send

res.send = function(data: any) {

const responseTime = Date.now() - startTime


// Create traffic event

const event: TrafficEvent = {

id: event-${Date.now()}-${Math.random().toString(36).substr(2, 9)},

timestamp: Date.now(),

ip: req.ip || req.connection.remoteAddress || 'unknown',

userAgent: req.get('User-Agent') || '',

endpoint: req.path,

method: req.method,

statusCode: res.statusCode,

responseTime,

requestSize: JSON.stringify(req.body || {}).length,

responseSize: JSON.stringify(data || {}).length,

headers: this.getHeaders(),

sessionId: req.sessionID,

fingerprint: req.get('X-Fingerprint')

}


// Analyze traffic asynchronously

trafficAnalyzer.analyzeTrafficEvent(event).catch(error => {

console.error('Traffic analysis error:', error)

})


// Call original send

originalSend.call(this, data)

}


next()

}


// Apply traffic analysis middleware

app.use('/api', trafficAnalysisMiddleware)


// Traffic analytics endpoint

app.get('/api/traffic-analytics', (req, res) => {

const analytics = trafficAnalyzer.getTrafficAnalytics()

const patterns = trafficAnalyzer.getActivePatterns()


res.json({

analytics,

patterns: patterns.slice(0, 10), // Return top 10 patterns

timestamp: new Date().toISOString()

})

})


// Behavioral profile endpoint

app.get('/api/behavioral-profile/:key', (req, res) => {

const { key } = req.params

const profile = trafficAnalyzer.getBehavioralProfile(key)


if (!profile) {

return res.status(404).json({ error: 'Profile not found' })

}


res.json({

profile,

timestamp: new Date().toISOString()

})

})


// Real-time traffic monitoring (WebSocket)

app.ws('/api/traffic-monitor', (ws: any) => {

console.log('Traffic monitoring client connected')


const sendUpdate = () => {

const analytics = trafficAnalyzer.getTrafficAnalytics()

const patterns = trafficAnalyzer.getActivePatterns()


ws.send(JSON.stringify({

type: 'traffic_update',

analytics,

patterns: patterns.slice(0, 5), // Send only recent patterns

timestamp: new Date().toISOString()

}))

}


// Send updates every 10 seconds

const interval = setInterval(sendUpdate, 10000)


ws.on('close', () => {

console.log('Traffic monitoring client disconnected')

clearInterval(interval)

})

})


console.log('Real-time traffic analysis engine initialized')


console.log('Real-time traffic analysis engine initialized')

Advanced Mitigation Strategies


// Comprehensive bot mitigation and response system
interface MitigationStrategy {
  id: string
  name: string
  type: 'rate_limiting' | 'challenge' | 'block' | 'redirect' | 'delay'
  conditions: {
    riskLevel: string[]
    botTypes: string[]
    trafficPatterns: string[]
    requestVolume: number
  }
  actions: {
    rateLimit?: {
      requestsPerMinute: number
      burstLimit: number
      windowSize: number
    }
    challenge?: {
      type: 'captcha' | 'proof_of_work' | 'device_fingerprint' | 'behavioral'
      difficulty: 'low' | 'medium' | 'high'
      timeout: number
    }
    block?: {
      duration: number // minutes
      reason: string
    }
    redirect?: {
      url: string
      preserveQuery: boolean
    }
    delay?: {
      milliseconds: number
      jitter: boolean
    }
  }
  priority: number
  enabled: boolean
}

interface MitigationAction {
  strategyId: string
  actionType: string
  timestamp: number
  ip: string
  sessionId?: string
  reason: string
  duration?: number
  metadata: Record<string, any>
}

class AdvancedMitigationEngine {
  private strategies: Map<string, MitigationStrategy> = new Map()
  private activeMitigations: Map<string, MitigationAction[]> = new Map()
  private mitigationStats: Map<string, { triggered: number; effective: number; falsePositive: number }> = new Map()

  constructor() {
    this.initializeDefaultStrategies()
    this.startMitigationMonitoring()
  }

  async applyMitigation(
    riskAssessment: any,
    trafficEvent: any,
    patterns: any[]
  ): Promise<{
    actions: MitigationAction[]
    blocked: boolean
    requiresVerification: boolean
    response: any
  }> {
    const applicableStrategies = this.findApplicableStrategies(riskAssessment, patterns)
    const actions: MitigationAction[] = []

    for (const strategy of applicableStrategies) {
      const action = await this.executeStrategy(strategy, riskAssessment, trafficEvent)
      if (action) {
        actions.push(action)
      }
    }

    // Determine if request should be blocked
    const blockingActions = actions.filter(a => a.actionType === 'block')
    const blocked = blockingActions.length > 0

    // Check if verification is required
    const challengeActions = actions.filter(a => a.actionType === 'challenge')
    const requiresVerification = challengeActions.length > 0

    // Generate response based on actions
    const response = this.generateMitigationResponse(actions, blocked, requiresVerification)

    // Record mitigation for analysis
    this.recordMitigationActions(actions, trafficEvent.ip)

    return {
      actions,
      blocked,
      requiresVerification,
      response
    }
  }

  private findApplicableStrategies(riskAssessment: any, patterns: any[]): MitigationStrategy[] {
    const applicable: MitigationStrategy[] = []

    for (const strategy of this.strategies.values()) {
      if (!strategy.enabled) continue

      // Check risk level condition
      if (strategy.conditions.riskLevel.length > 0 &&
          !strategy.conditions.riskLevel.includes(riskAssessment.level)) {
        continue
      }

      // Check bot type condition
      if (riskAssessment.botType && strategy.conditions.botTypes.length > 0 &&
          !strategy.conditions.botTypes.includes(riskAssessment.botType)) {
        continue
      }

      // Check traffic pattern condition
      if (strategy.conditions.trafficPatterns.length > 0) {
        const hasMatchingPattern = patterns.some(p =>
          strategy.conditions.trafficPatterns.includes(p.patternType)
        )
        if (!hasMatchingPattern) continue
      }

      applicable.push(strategy)
    }

    // Sort by priority
    return applicable.sort((a, b) => b.priority - a.priority)
  }

  private async executeStrategy(
    strategy: MitigationStrategy,
    riskAssessment: any,
    trafficEvent: any
  ): Promise<MitigationAction | null> {
    const action: MitigationAction = {
      strategyId: strategy.id,
      actionType: strategy.type,
      timestamp: Date.now(),
      ip: trafficEvent.ip,
      sessionId: trafficEvent.sessionId,
      reason: `Applied ${strategy.name} due to ${riskAssessment.level} risk`,
      metadata: {
        riskLevel: riskAssessment.level,
        botType: riskAssessment.botType,
        confidence: riskAssessment.confidence
      }
    }

    switch (strategy.type) {
      case 'rate_limiting':
        return await this.applyRateLimiting(action, strategy)

      case 'challenge':
        return await this.applyChallenge(action, strategy)

      case 'block':
        return await this.applyBlocking(action, strategy)

      case 'redirect':
        return await this.applyRedirect(action, strategy)

      case 'delay':
        return await this.applyDelay(action, strategy)

      default:
        return null
    }
  }

  private async applyRateLimiting(action: MitigationAction, strategy: MitigationStrategy): Promise<MitigationAction> {
    action.duration = strategy.actions.rateLimit?.windowSize || 60
    action.metadata.rateLimit = strategy.actions.rateLimit

    // In production, integrate with rate limiting service
    console.log(`Applied rate limiting for IP ${action.ip}: ${JSON.stringify(strategy.actions.rateLimit)}`)

    return action
  }

  private async applyChallenge(action: MitigationAction, strategy: MitigationStrategy): Promise<MitigationAction> {
    action.metadata.challenge = strategy.actions.challenge

    // In production, integrate with CAPTCHA or PoW service
    console.log(`Applied challenge for IP ${action.ip}: ${JSON.stringify(strategy.actions.challenge)}`)

    return action
  }

  private async applyBlocking(action: MitigationAction, strategy: MitigationStrategy): Promise<MitigationAction> {
    action.duration = strategy.actions.block?.duration || 60
    action.reason = strategy.actions.block?.reason || action.reason
    action.metadata.block = strategy.actions.block

    // In production, add IP to blocklist
    console.log(`Blocked IP ${action.ip} for ${action.duration} minutes: ${action.reason}`)

    return action
  }

  private async applyRedirect(action: MitigationAction, strategy: MitigationStrategy): Promise<MitigationAction> {
    action.metadata.redirect = strategy.actions.redirect

    // In production, handle redirect logic
    console.log(`Redirecting IP ${action.ip} to ${strategy.actions.redirect?.url}`)

    return action
  }

  private async applyDelay(action: MitigationAction, strategy: MitigationStrategy): Promise<MitigationAction> {
    action.metadata.delay = strategy.actions.delay

    // In production, add artificial delay
    console.log(`Adding delay for IP ${action.ip}: ${strategy.actions.delay?.milliseconds}ms`)

    return action
  }

  private generateMitigationResponse(
    actions: MitigationAction[],
    blocked: boolean,
    requiresVerification: boolean
  ): any {
    if (blocked) {
      return {
        status: 429,
        error: 'Request blocked',
        message: 'Your request has been blocked due to suspicious activity',
        retryAfter: Math.max(...actions.map(a => a.duration || 60))
      }
    }

    if (requiresVerification) {
      return {
        status: 200,
        requiresVerification: true,
        challenge: actions.find(a => a.actionType === 'challenge')?.metadata.challenge,
        message: 'Additional verification required'
      }
    }

    return {
      status: 200,
      mitigated: actions.length > 0,
      actions: actions.map(a => ({ type: a.actionType, strategy: a.strategyId }))
    }
  }

  private recordMitigationActions(actions: MitigationAction[], ip: string): void {
    if (!this.activeMitigations.has(ip)) {
      this.activeMitigations.set(ip, [])
    }

    this.activeMitigations.get(ip)!.push(...actions)

    // Clean up old actions (older than 1 hour)
    const oneHourAgo = Date.now() - 60 * 60 * 1000
    for (const [ipKey, ipActions] of this.activeMitigations.entries()) {
      const recentActions = ipActions.filter(a => a.timestamp > oneHourAgo)
      if (recentActions.length === 0) {
        this.activeMitigations.delete(ipKey)
      } else {
        this.activeMitigations.set(ipKey, recentActions)
      }
    }
  }

  private initializeDefaultStrategies(): void {
    const defaultStrategies: MitigationStrategy[] = [
      {
        id: 'critical_block',
        name: 'Critical Risk Blocking',
        type: 'block',
        conditions: {
          riskLevel: ['critical'],
          botTypes: [],
          trafficPatterns: [],
          requestVolume: 0
        },
        actions: {
          block: {
            duration: 60,
            reason: 'Critical risk bot activity detected'
          }
        },
        priority: 10,
        enabled: true
      },
      {
        id: 'high_risk_challenge',
        name: 'High Risk Challenge',
        type: 'challenge',
        conditions: {
          riskLevel: ['high'],
          botTypes: [],
          trafficPatterns: [],
          requestVolume: 0
        },
        actions: {
          challenge: {
            type: 'captcha',
            difficulty: 'medium',
            timeout: 300
          }
        },
        priority: 9,
        enabled: true
      },
      {
        id: 'burst_rate_limit',
        name: 'Burst Traffic Rate Limiting',
        type: 'rate_limiting',
        conditions: {
          riskLevel: [],
          botTypes: [],
          trafficPatterns: ['burst'],
          requestVolume: 50
        },
        actions: {
          rateLimit: {
            requestsPerMinute: 10,
            burstLimit: 5,
            windowSize: 60
          }
        },
        priority: 8,
        enabled: true
      },
      {
        id: 'scraper_delay',
        name: 'Scraper Delay',
        type: 'delay',
        conditions: {
          riskLevel: [],
          botTypes: ['scraper'],
          trafficPatterns: [],
          requestVolume: 0
        },
        actions: {
          delay: {
            milliseconds: 2000,
            jitter: true
          }
        },
        priority: 7,
        enabled: true
      },
      {
        id: 'credential_stuffer_block',
        name: 'Credential Stuffing Block',
        type: 'block',
        conditions: {
          riskLevel: ['medium', 'high', 'critical'],
          botTypes: ['credential_stuffer'],
          trafficPatterns: [],
          requestVolume: 0
        },
        actions: {
          block: {
            duration: 30,
            reason: 'Credential stuffing attempt detected'
          }
        },
        priority: 10,
        enabled: true
      }
    ]

    defaultStrategies.forEach(strategy => {
      this.strategies.set(strategy.id, strategy)
    })
  }

  private startMitigationMonitoring(): void {
    // Monitor mitigation effectiveness
    setInterval(() => {
      this.analyzeMitigationEffectiveness()
    }, 10 * 60 * 1000) // Every 10 minutes
  }

  private analyzeMitigationEffectiveness(): void {
    for (const [ip, actions] of this.activeMitigations.entries()) {
      const recentActions = actions.filter(a => a.timestamp > Date.now() - 30 * 60 * 1000)

      if (recentActions.length > 5) {
        console.log(`High mitigation frequency for IP ${ip}: ${recentActions.length} actions in 30 minutes`)

        // Consider escalating mitigation
        this.escalateMitigationForIP(ip)
      }
    }
  }

  private escalateMitigationForIP(ip: string): void {
    // In production, escalate to more aggressive mitigation
    console.log(`Escalating mitigation for persistent offender IP: ${ip}`)
  }

  // Strategy management
  addStrategy(strategy: MitigationStrategy): void {
    this.strategies.set(strategy.id, strategy)
  }

  removeStrategy(strategyId: string): void {
    this.strategies.delete(strategyId)
  }

  updateStrategy(strategyId: string, updates: Partial<MitigationStrategy>): void {
    const existing = this.strategies.get(strategyId)
    if (existing) {
      this.strategies.set(strategyId, { ...existing, ...updates })
    }
  }

  getActiveMitigations(ip?: string): MitigationAction[] {
    if (ip) {
      return this.activeMitigations.get(ip) || []
    }

    return Array.from(this.activeMitigations.values()).flat()
  }

  getMitigationStats(): Record<string, { triggered: number; effective: number; falsePositive: number }> {
    return Object.fromEntries(this.mitigationStats.entries())
  }
}

// Integration with Express.js
class MitigationMiddleware {
  private mitigationEngine: AdvancedMitigationEngine

  constructor() {
    this.mitigationEngine = new AdvancedMitigationEngine()
  }

  async applyMitigation(req: any, res: any, next: any): Promise<void> {
    // Skip mitigation for health checks and internal requests
    if (req.path.startsWith('/health') || req.path.startsWith('/internal')) {
      return next()
    }

    // Get bot detection results
    const botDetection = req.botDetection
    if (!botDetection) {
      return next()
    }

    try {
      // Apply mitigation based on risk assessment
      const mitigation = await this.mitigationEngine.applyMitigation(
        botDetection.prediction,
        {
          ip: req.ip,
          sessionId: req.sessionID,
          userAgent: req.get('User-Agent'),
          timestamp: Date.now()
        },
        [] // Would be populated with actual patterns
      )

      // Add mitigation info to request
      req.mitigation = mitigation

      // Handle blocking
      if (mitigation.blocked) {
        return res.status(mitigation.response.status).json(mitigation.response)
      }

      // Handle challenges
      if (mitigation.requiresVerification) {
        // In production, serve challenge page or API
        return res.status(mitigation.response.status).json(mitigation.response)
      }

      next()

    } catch (error) {
      console.error('Mitigation middleware error:', error)
      next()
    }
  }
}

// Initialize mitigation system
const mitigationEngine = new AdvancedMitigationEngine()
const mitigationMiddleware = new MitigationMiddleware()

// Apply mitigation middleware
app.use('/api', mitigationMiddleware.applyMitigation)

// Mitigation management endpoints
app.get('/api/mitigation/strategies', (req, res) => {
  const strategies = Array.from(mitigationEngine['strategies'].values())

  res.json({
    strategies,
    timestamp: new Date().toISOString()
  })
})

app.post('/api/mitigation/strategies', (req, res) => {
  try {
    const strategy: MitigationStrategy = req.body

    if (!strategy.id || !strategy.name || !strategy.type) {
      return res.status(400).json({ error: 'Invalid strategy format' })
    }

    mitigationEngine.addStrategy(strategy)

    res.json({
      message: 'Strategy added successfully',
      strategy,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Strategy creation error:', error)
    res.status(500).json({ error: 'Strategy creation failed' })
  }
})

app.put('/api/mitigation/strategies/:id', (req, res) => {
  try {
    const { id } = req.params
    const updates = req.body

    mitigationEngine.updateStrategy(id, updates)

    res.json({
      message: 'Strategy updated successfully',
      strategyId: id,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Strategy update error:', error)
    res.status(500).json({ error: 'Strategy update failed' })
  }
})

app.delete('/api/mitigation/strategies/:id', (req, res) => {
  try {
    const { id } = req.params

    mitigationEngine.removeStrategy(id)

    res.json({
      message: 'Strategy removed successfully',
      strategyId: id,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Strategy removal error:', error)
    res.status(500).json({ error: 'Strategy removal failed' })
  }
})

app.get('/api/mitigation/active', (req, res) => {
  const { ip } = req.query

  const mitigations = mitigationEngine.getActiveMitigations(ip as string)

  res.json({
    mitigations,
    count: mitigations.length,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/mitigation/stats', (req, res) => {
  const stats = mitigationEngine.getMitigationStats()

  res.json({
    stats,
    timestamp: new Date().toISOString()
  })
})

console.log('Advanced mitigation strategies system initialized')

Bot Detection Dashboard and Monitoring


// Real-time dashboard for bot detection monitoring and analytics
interface DashboardMetrics {
  timestamp: number
  totalRequests: number
  botRequests: number
  humanRequests: number
  blockedRequests: number
  challengedRequests: number
  averageResponseTime: number
  systemHealth: 'healthy' | 'warning' | 'critical'
  topBotTypes: Array<{ type: string; count: number; percentage: number }>
  topRiskyIPs: Array<{ ip: string; riskScore: number; requests: number }>
  patternTrends: Array<{ pattern: string; trend: 'increasing' | 'decreasing' | 'stable'; change: number }>
}

interface AlertRule {
  id: string
  name: string
  condition: {
    metric: string
    operator: '>' | '<' | '=' | '>=' | '<='
    threshold: number
    duration: number // minutes
  }
  severity: 'low' | 'medium' | 'high' | 'critical'
  enabled: boolean
  lastTriggered?: number
  notificationChannels: string[]
}

interface AlertNotification {
  ruleId: string
  timestamp: number
  severity: string
  title: string
  description: string
  metrics: Record<string, number>
  recommendations: string[]
}

class BotDetectionDashboard {
  private metrics: DashboardMetrics[] = []
  private alertRules: Map<string, AlertRule> = new Map()
  private alertHistory: AlertNotification[] = []
  private subscribers: Set<any> = new Set()

  constructor() {
    this.initializeDefaultAlertRules()
    this.startMetricsCollection()
    this.startAlertMonitoring()
  }

  async getCurrentMetrics(): Promise<DashboardMetrics> {
    // Aggregate current metrics from various sources
    const currentMetrics = await this.collectCurrentMetrics()

    // Calculate trends and health status
    const healthStatus = this.calculateSystemHealth(currentMetrics)
    const trends = await this.calculatePatternTrends()

    return {
      ...currentMetrics,
      systemHealth: healthStatus,
      patternTrends: trends,
      topBotTypes: await this.getTopBotTypes(),
      topRiskyIPs: await this.getTopRiskyIPs()
    }
  }

  private async collectCurrentMetrics(): Promise<Partial<DashboardMetrics>> {
    // In production, collect from monitoring systems
    // For demo, simulate metrics collection

    return {
      timestamp: Date.now(),
      totalRequests: Math.floor(Math.random() * 10000) + 5000,
      botRequests: Math.floor(Math.random() * 1000) + 200,
      humanRequests: Math.floor(Math.random() * 8000) + 4000,
      blockedRequests: Math.floor(Math.random() * 100) + 20,
      challengedRequests: Math.floor(Math.random() * 200) + 50,
      averageResponseTime: Math.random() * 200 + 100
    }
  }

  private calculateSystemHealth(metrics: Partial<DashboardMetrics>): 'healthy' | 'warning' | 'critical' {
    const botPercentage = metrics.botRequests! / metrics.totalRequests!
    const errorRate = metrics.blockedRequests! / metrics.totalRequests!

    if (botPercentage > 0.3 || errorRate > 0.1) {
      return 'critical'
    }

    if (botPercentage > 0.15 || errorRate > 0.05) {
      return 'warning'
    }

    return 'healthy'
  }

  private async calculatePatternTrends(): Promise<Array<{ pattern: string; trend: 'increasing' | 'decreasing' | 'stable'; change: number }>> {
    // In production, analyze historical pattern data
    // For demo, simulate trend analysis

    const patterns = ['burst', 'periodic', 'sequential', 'suspicious']
    return patterns.map(pattern => ({
      pattern,
      trend: ['increasing', 'decreasing', 'stable'][Math.floor(Math.random() * 3)] as any,
      change: (Math.random() - 0.5) * 20
    }))
  }

  private async getTopBotTypes(): Promise<Array<{ type: string; count: number; percentage: number }>> {
    const botTypes = [
      { type: 'scraper', count: Math.floor(Math.random() * 200) + 50 },
      { type: 'credential_stuffer', count: Math.floor(Math.random() * 100) + 20 },
      { type: 'spammer', count: Math.floor(Math.random() * 150) + 30 },
      { type: 'click_fraud', count: Math.floor(Math.random() * 80) + 10 }
    ]

    const total = botTypes.reduce((sum, type) => sum + type.count, 0)

    return botTypes
      .sort((a, b) => b.count - a.count)
      .slice(0, 5)
      .map(type => ({
        ...type,
        percentage: Math.round((type.count / total) * 100)
      }))
  }

  private async getTopRiskyIPs(): Promise<Array<{ ip: string; riskScore: number; requests: number }>> {
    // In production, get from risk scoring system
    // For demo, simulate risky IP data

    const riskyIPs = []
    for (let i = 0; i < 10; i++) {
      riskyIPs.push({
        ip: `192.168.1.${Math.floor(Math.random() * 255)}`,
        riskScore: Math.floor(Math.random() * 100),
        requests: Math.floor(Math.random() * 1000) + 100
      })
    }

    return riskyIPs
      .sort((a, b) => b.riskScore - a.riskScore)
      .slice(0, 10)
  }

  private initializeDefaultAlertRules(): void {
    const defaultRules: AlertRule[] = [
      {
        id: 'high_bot_percentage',
        name: 'High Bot Traffic Percentage',
        condition: {
          metric: 'botPercentage',
          operator: '>',
          threshold: 25,
          duration: 5
        },
        severity: 'high',
        enabled: true,
        notificationChannels: ['email', 'slack']
      },
      {
        id: 'critical_system_health',
        name: 'Critical System Health',
        condition: {
          metric: 'systemHealth',
          operator: '=',
          threshold: 0, // critical
          duration: 2
        },
        severity: 'critical',
        enabled: true,
        notificationChannels: ['email', 'slack', 'sms']
      },
      {
        id: 'rapid_response_time_increase',
        name: 'Rapid Response Time Increase',
        condition: {
          metric: 'averageResponseTime',
          operator: '>',
          threshold: 500,
          duration: 3
        },
        severity: 'medium',
        enabled: true,
        notificationChannels: ['email']
      }
    ]

    defaultRules.forEach(rule => {
      this.alertRules.set(rule.id, rule)
    })
  }

  private startMetricsCollection(): void {
    // Collect metrics every minute
    setInterval(async () => {
      const metrics = await this.getCurrentMetrics()
      this.metrics.push(metrics)

      // Keep only last 24 hours of metrics
      const twentyFourHoursAgo = Date.now() - 24 * 60 * 60 * 1000
      this.metrics = this.metrics.filter(m => m.timestamp > twentyFourHoursAgo)

      // Notify subscribers
      this.notifySubscribers(metrics)
    }, 60 * 1000)
  }

  private startAlertMonitoring(): void {
    // Check alerts every minute
    setInterval(() => {
      this.checkAlertConditions()
    }, 60 * 1000)
  }

  private async checkAlertConditions(): Promise<void> {
    const currentMetrics = await this.getCurrentMetrics()

    for (const rule of this.alertRules.values()) {
      if (!rule.enabled) continue

      const shouldTrigger = await this.evaluateAlertCondition(rule, currentMetrics)

      if (shouldTrigger) {
        await this.triggerAlert(rule, currentMetrics)
      }
    }
  }

  private async evaluateAlertCondition(rule: AlertRule, metrics: DashboardMetrics): Promise<boolean> {
    // Check if condition has been met for the required duration
    const recentMetrics = this.metrics.slice(-rule.condition.duration)

    if (recentMetrics.length < rule.condition.duration) {
      return false
    }

    // Check if all recent metrics meet the condition
    return recentMetrics.every(m => {
      const value = this.getMetricValue(m, rule.condition.metric)
      return this.compareValues(value, rule.condition.threshold, rule.condition.operator)
    })
  }

  private getMetricValue(metrics: DashboardMetrics, metricName: string): number {
    switch (metricName) {
      case 'botPercentage':
        return (metrics.botRequests / metrics.totalRequests) * 100
      case 'systemHealth':
        return metrics.systemHealth === 'critical' ? 0 : metrics.systemHealth === 'warning' ? 1 : 2
      case 'averageResponseTime':
        return metrics.averageResponseTime
      default:
        return 0
    }
  }

  private compareValues(value: number, threshold: number, operator: string): boolean {
    switch (operator) {
      case '>': return value > threshold
      case '<': return value < threshold
      case '=': return Math.abs(value - threshold) < 0.01
      case '>=': return value >= threshold
      case '<=': return value <= threshold
      default: return false
    }
  }

  private async triggerAlert(rule: AlertRule, metrics: DashboardMetrics): Promise<void> {
    // Check if already triggered recently (avoid spam)
    const recentAlerts = this.alertHistory.filter(a =>
      a.ruleId === rule.id && a.timestamp > Date.now() - 60 * 60 * 1000 // 1 hour cooldown
    )

    if (recentAlerts.length > 0) {
      return
    }

    const alert: AlertNotification = {
      ruleId: rule.id,
      timestamp: Date.now(),
      severity: rule.severity,
      title: rule.name,
      description: `Alert condition met: ${rule.condition.metric} ${rule.condition.operator} ${rule.condition.threshold}`,
      metrics: {
        [rule.condition.metric]: this.getMetricValue(metrics, rule.condition.metric)
      },
      recommendations: this.generateAlertRecommendations(rule, metrics)
    }

    this.alertHistory.push(alert)
    rule.lastTriggered = Date.now()

    // Send notifications
    await this.sendAlertNotifications(alert, rule)

    console.log(`🚨 Alert triggered: ${alert.title}`)
  }

  private generateAlertRecommendations(rule: AlertRule, metrics: DashboardMetrics): string[] {
    switch (rule.id) {
      case 'high_bot_percentage':
        return [
          'Review bot detection thresholds',
          'Increase mitigation aggressiveness',
          'Check for new bot patterns'
        ]

      case 'critical_system_health':
        return [
          'Immediate investigation required',
          'Check system resources',
          'Review recent configuration changes',
          'Consider emergency mitigation measures'
        ]

      case 'rapid_response_time_increase':
        return [
          'Check system performance',
          'Review recent traffic spikes',
          'Consider scaling resources'
        ]

      default:
        return ['Review system status and recent changes']
    }
  }

  private async sendAlertNotifications(alert: AlertNotification, rule: AlertRule): Promise<void> {
    // In production, send to configured channels (email, Slack, etc.)
    console.log(`Sending alert notification to channels: ${rule.notificationChannels.join(', ')}`)
  }

  // WebSocket support for real-time dashboard updates
  subscribeToUpdates(ws: any): void {
    this.subscribers.add(ws)

    ws.on('close', () => {
      this.subscribers.delete(ws)
    })
  }

  private notifySubscribers(metrics: DashboardMetrics): void {
    const update = {
      type: 'dashboard_update',
      metrics,
      timestamp: new Date().toISOString()
    }

    this.subscribers.forEach(ws => {
      if (ws.readyState === 1) { // WebSocket.OPEN
        ws.send(JSON.stringify(update))
      }
    })
  }

  // Alert management
  addAlertRule(rule: AlertRule): void {
    this.alertRules.set(rule.id, rule)
  }

  removeAlertRule(ruleId: string): void {
    this.alertRules.delete(ruleId)
  }

  getAlertHistory(hours: number = 24): AlertNotification[] {
    const cutoff = Date.now() - hours * 60 * 60 * 1000
    return this.alertHistory.filter(a => a.timestamp > cutoff)
  }

  getAlertRules(): AlertRule[] {
    return Array.from(this.alertRules.values())
  }
}

// Initialize dashboard
const botDetectionDashboard = new BotDetectionDashboard()

// Dashboard API endpoints
app.get('/api/dashboard/metrics', async (req, res) => {
  try {
    const metrics = await botDetectionDashboard.getCurrentMetrics()

    res.json({
      metrics,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Dashboard metrics error:', error)
    res.status(500).json({ error: 'Metrics unavailable' })
  }
})

app.get('/api/dashboard/alerts', (req, res) => {
  const { hours = 24 } = req.query

  const alerts = botDetectionDashboard.getAlertHistory(Number(hours))

  res.json({
    alerts,
    count: alerts.length,
    timestamp: new Date().toISOString()
  })
})

app.get('/api/dashboard/alert-rules', (req, res) => {
  const rules = botDetectionDashboard.getAlertRules()

  res.json({
    rules,
    timestamp: new Date().toISOString()
  })
})

app.post('/api/dashboard/alert-rules', (req, res) => {
  try {
    const rule: AlertRule = req.body

    if (!rule.id || !rule.name || !rule.condition) {
      return res.status(400).json({ error: 'Invalid alert rule format' })
    }

    botDetectionDashboard.addAlertRule(rule)

    res.json({
      message: 'Alert rule added successfully',
      rule,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Alert rule creation error:', error)
    res.status(500).json({ error: 'Alert rule creation failed' })
  }
})

app.delete('/api/dashboard/alert-rules/:id', (req, res) => {
  try {
    const { id } = req.params

    botDetectionDashboard.removeAlertRule(id)

    res.json({
      message: 'Alert rule removed successfully',
      ruleId: id,
      timestamp: new Date().toISOString()
    })

  } catch (error) {
    console.error('Alert rule removal error:', error)
    res.status(500).json({ error: 'Alert rule removal failed' })
  }
})

// Real-time dashboard WebSocket
app.ws('/api/dashboard/live', (ws: any) => {
  console.log('Dashboard client connected')

  botDetectionDashboard.subscribeToUpdates(ws)

  // Send initial metrics
  botDetectionDashboard.getCurrentMetrics().then(metrics => {
    ws.send(JSON.stringify({
      type: 'initial_metrics',
      metrics,
      timestamp: new Date().toISOString()
    }))
  }).catch(error => {
    console.error('Initial metrics error:', error)
  })
})

console.log('Bot detection dashboard and monitoring system initialized')

Protection Mechanisms


Successful implementation requires understanding the technical landscape and choosing appropriate strategies.


Implementation Approaches


Modern Solutions

  • Cloud-native architectures
  • Microservices integration
  • Real-time processing capabilities
  • Automated scaling mechanisms

Bot Detection and Mitigation Architecture

Bot Detection and Mitigation Architecture


Implementation Strategies {#implementation-strategies}


Deploy comprehensive bot detection system.


class ComprehensiveBotProtection {
  private detector: BotDetectionEngine
  private mitigator: BotMitigationSystem
  
  constructor() {
    this.detector = new BotDetectionEngine()
    this.mitigator = new BotMitigationSystem()
  }
  
  async protect(req: any): Promise<{
    allowed: boolean
    action: string
    reason?: string
  }> {
    const analysis = await this.detector.analyzeRequest(req)
    
    if (analysis.isBot && analysis.confidence > 80) {
      return await this.mitigator.mitigate(analysis)
    }
    
    return { allowed: true, action: 'allow' }
  }
}

Monitoring and Detection {#monitoring-and-detection}


Track bot activity and detection accuracy.


Key Metrics:

  • Bot detection rate
  • False positive rate
  • Challenge solve rate (for CAPTCHAs)
  • Blocked request percentage
  • Bot pattern evolution

Incident Response Planning {#incident-response-planning}


Respond to bot attack scenarios.


const BOT_RESPONSE_PLAYBOOKS = {
  'scraping_bot': {
    action: 'throttle',
    severity: 'medium',
    escalate: false
  },
  'ddos_bot': {
    action: 'block',
    severity: 'critical',
    escalate: true
  },
  'credential_stuffing': {
    action: 'challenge',
    severity: 'high',
    escalate: true
  }
}

Compliance and Best Practices {#compliance-and-best-practices}


Balance bot protection with legitimate users.


Best Practices:

  • Minimize false positives (don't block real users)
  • Provide clear feedback for challenged requests
  • Maintain audit logs for bot detection
  • Regular testing with automation tools
  • Adaptive thresholds based on traffic patterns

Conclusion {#conclusion}


Effective bot detection requires multi-layered analysis combining behavioral patterns, fingerprinting, challenge-response, and rate limiting. Success depends on balancing security with user experience, minimizing false positives, and continuously adapting to evolving bot techniques.


Key success factors include implementing multiple detection signals, using confidence-based decisions, providing fallback for legitimate automation, monitoring false positive rates, and maintaining up-to-date bot signature databases.


Protect your applications from bots with our detection APIs, designed to identify and mitigate automated traffic while maintaining excellent user experience for legitimate visitors.

Tags:bot-detectionautomated-trafficabuse-preventiontraffic-analysis