API Monitoring and Alerting: Detecting Suspicious Patterns

Build comprehensive API monitoring and alerting systems to detect security threats and performance issues in real-time.

API Monitoring and Alerting: Detecting Suspicious Patterns
August 3, 2025
22 min read
API Security

API Monitoring and Alerting: Detecting Suspicious Patterns


Comprehensive API monitoring and alerting enables proactive threat detection and performance optimization. Building effective monitoring systems requires understanding key metrics, alerting strategies, and response procedures.


API Monitoring and Alerting Overview

API Monitoring and Alerting Overview


Security Threat Landscape


Modern APIs face sophisticated threats that require comprehensive monitoring and rapid response capabilities.


Common Attack Vectors


DDoS Attacks

  • Volumetric attacks overwhelming bandwidth
  • Application layer attacks targeting specific endpoints
  • Protocol attacks exploiting weaknesses in TCP/IP stack
  • Amplification attacks using NTP, DNS, or Memcached servers

API Abuse Patterns

  • Credential stuffing using stolen username/password combinations
  • Brute force attacks attempting to guess API keys or tokens
  • Rate limit circumvention through distributed attacks
  • Data scraping and content theft operations

Injection Attacks

  • SQL injection through malformed API parameters
  • NoSQL injection targeting MongoDB and similar databases
  • Command injection exploiting shell metacharacters
  • LDAP injection attacking directory services

Authentication Bypass

  • JWT token manipulation and signature cracking
  • OAuth implementation flaws and misconfigurations
  • Session fixation and cookie hijacking attempts
  • API key enumeration and reuse attacks

API Security Threat Landscape

API Security Threat Landscape


Practical Implementation Examples


Real-Time Metrics Collection Pipeline


// Production-ready API monitoring service with real-time metrics collection
interface APIMetrics {
  endpoint: string
  method: string
  statusCode: number
  responseTime: number
  requestSize: number
  responseSize: number
  timestamp: number
  clientIP: string
  userAgent: string
  apiKey?: string
  errors?: string[]
  tags?: Record<string, string>
}

interface AlertRule {
  id: string
  name: string
  condition: string
  threshold: number
  duration: number // in seconds
  severity: 'low' | 'medium' | 'high' | 'critical'
  channels: string[]
  enabled: boolean
}

interface AlertEvent {
  ruleId: string
  triggeredAt: Date
  value: number
  context: Record<string, any>
  resolved?: boolean
  resolvedAt?: Date
}

class APIMonitoringService {
  private metricsBuffer: APIMetrics[] = []
  private alertRules: Map<string, AlertRule> = new Map()
  private activeAlerts: Map<string, AlertEvent> = new Map()
  private metricsClient: any // Prometheus, DataDog, etc.

  constructor(metricsClient: any) {
    this.metricsClient = metricsClient
    this.initializeDefaultRules()
    this.startMetricsProcessing()
  }

  // Middleware for Express.js applications
  createMiddleware() {
    return async (req: any, res: any, next: any) => {
      const startTime = Date.now()
      const originalSend = res.send

      // Track response data
      let responseData = ''
      res.send = function(data: any) {
        responseData = data
        return originalSend.call(this, data)
      }

      // Collect metrics after response
      res.on('finish', () => {
        const metrics: APIMetrics = {
          endpoint: req.route?.path || req.path,
          method: req.method,
          statusCode: res.statusCode,
          responseTime: Date.now() - startTime,
          requestSize: JSON.stringify(req.body || {}).length + (req.headers['content-length'] || 0),
          responseSize: responseData.length,
          timestamp: Date.now(),
          clientIP: req.ip || req.connection.remoteAddress,
          userAgent: req.get('User-Agent') || '',
          apiKey: req.headers['x-api-key']?.substring(0, 8) + '***', // Masked for security
          tags: {
            version: process.env.API_VERSION || '1.0',
            environment: process.env.NODE_ENV || 'development'
          }
        }

        this.collectMetrics(metrics)
      })

      next()
    }
  }

  private collectMetrics(metrics: APIMetrics): void {
    this.metricsBuffer.push(metrics)

    // Process buffer every 10 seconds
    if (this.metricsBuffer.length >= 100) {
      this.processMetricsBuffer()
    }
  }

  private async processMetricsBuffer(): Promise<void> {
    if (this.metricsBuffer.length === 0) return

    const batch = [...this.metricsBuffer]
    this.metricsBuffer = []

    try {
      // Send to metrics backend (Prometheus, DataDog, etc.)
      await this.sendMetricsToBackend(batch)

      // Check alert conditions
      await this.evaluateAlertRules(batch)

      // Store for historical analysis
      await this.storeMetricsForAnalysis(batch)

    } catch (error) {
      console.error('Metrics processing error:', error)
      // Re-queue failed metrics for retry
      this.metricsBuffer.unshift(...batch)
    }
  }

  private async sendMetricsToBackend(metrics: APIMetrics[]): Promise<void> {
    // Format for your metrics backend
    const prometheusMetrics = this.formatForPrometheus(metrics)

    if (this.metricsClient) {
      await this.metricsClient.send(prometheusMetrics)
    } else {
      // Fallback to console logging in development
      console.log('API Metrics:', prometheusMetrics)
    }
  }

  private formatForPrometheus(metrics: APIMetrics[]): string {
    const lines: string[] = []

    metrics.forEach(metric => {
      // Response time histogram
      lines.push(`api_request_duration_seconds{endpoint="${metric.endpoint}",method="${metric.method}",status="${metric.statusCode}"} ${metric.responseTime / 1000}`)

      // Request count counter
      lines.push(`api_requests_total{endpoint="${metric.endpoint}",method="${metric.method}",status="${metric.statusCode}"} 1`)

      // Request size summary
      lines.push(`api_request_size_bytes{endpoint="${metric.endpoint}",method="${metric.method}"} ${metric.requestSize}`)

      // Response size summary
      lines.push(`api_response_size_bytes{endpoint="${metric.endpoint}",method="${metric.method}",status="${metric.statusCode}"} ${metric.responseSize}`)

      // Error rate (if status >= 400)
      if (metric.statusCode >= 400) {
        lines.push(`api_errors_total{endpoint="${metric.endpoint}",method="${metric.method}",status="${metric.statusCode}"} 1`)
      }
    })

    return lines.join('\n')
  }

  private async evaluateAlertRules(metrics: APIMetrics[]): Promise<void> {
    const now = Date.now()

    for (const rule of this.alertRules.values()) {
      if (!rule.enabled) continue

      const ruleMetrics = this.filterMetricsByRule(metrics, rule)
      const currentValue = this.calculateRuleValue(ruleMetrics, rule)

      // Check if alert should trigger
      if (this.shouldTriggerAlert(rule, currentValue, now)) {
        await this.triggerAlert(rule, currentValue, ruleMetrics)
      }

      // Check if alert should resolve
      if (this.shouldResolveAlert(rule, currentValue, now)) {
        await this.resolveAlert(rule)
      }
    }
  }

  private filterMetricsByRule(metrics: APIMetrics[], rule: AlertRule): APIMetrics[] {
    // Simple filtering - in production, use more sophisticated logic
    return metrics.filter(m => {
      // Filter by endpoint, method, status code, etc.
      return true // Simplified for demo
    })
  }

  private calculateRuleValue(metrics: APIMetrics[], rule: AlertRule): number {
    switch (rule.condition) {
      case 'error_rate':
        const total = metrics.length
        const errors = metrics.filter(m => m.statusCode >= 400).length
        return total > 0 ? (errors / total) * 100 : 0

      case 'avg_response_time':
        return metrics.length > 0
          ? metrics.reduce((sum, m) => sum + m.responseTime, 0) / metrics.length
          : 0

      case 'p95_response_time':
        if (metrics.length === 0) return 0
        const sorted = metrics.map(m => m.responseTime).sort((a, b) => a - b)
        const p95Index = Math.floor(sorted.length * 0.95)
        return sorted[p95Index] || 0

      case 'request_rate':
        return metrics.length

      default:
        return 0
    }
  }

  private shouldTriggerAlert(rule: AlertRule, value: number, now: number): boolean {
    // Check if threshold is exceeded
    const thresholdExceeded = this.compareValueToThreshold(value, rule.condition, rule.threshold)

    if (!thresholdExceeded) return false

    // Check if we've already triggered this alert recently
    const alertKey = `alert:${rule.id}`
    const lastTriggered = this.activeAlerts.get(alertKey)?.triggeredAt.getTime()

    if (lastTriggered && (now - lastTriggered) < rule.duration * 1000) {
      return false // Alert already active
    }

    return true
  }

  private shouldResolveAlert(rule: AlertRule, value: number, now: number): boolean {
    const alertKey = `alert:${rule.id}`
    const activeAlert = this.activeAlerts.get(alertKey)

    if (!activeAlert) return false

    // Check if value is back to normal
    const thresholdResolved = !this.compareValueToThreshold(value, rule.condition, rule.threshold)

    if (thresholdResolved) {
      return true
    }

    // Check if alert has been active too long (auto-resolve after 1 hour)
    if ((now - activeAlert.triggeredAt.getTime()) > 60 * 60 * 1000) {
      return true
    }

    return false
  }

  private compareValueToThreshold(value: number, condition: string, threshold: number): boolean {
    switch (condition) {
      case 'error_rate':
      case 'avg_response_time':
      case 'p95_response_time':
      case 'request_rate':
        return value > threshold

      default:
        return false
    }
  }

  private async triggerAlert(rule: AlertRule, value: number, context: APIMetrics[]): Promise<void> {
    const alertEvent: AlertEvent = {
      ruleId: rule.id,
      triggeredAt: new Date(),
      value,
      context: { recentMetrics: context.slice(-5) }, // Last 5 metrics for context
      resolved: false
    }

    this.activeAlerts.set(`alert:${rule.id}`, alertEvent)

    // Send alert to configured channels
    await this.sendAlert(rule, alertEvent)

    console.log(`🚨 Alert triggered: ${rule.name} (value: ${value}, threshold: ${rule.threshold})`)
  }

  private async resolveAlert(rule: AlertRule): Promise<void> {
    const alertKey = `alert:${rule.id}`
    const alert = this.activeAlerts.get(alertKey)

    if (alert) {
      alert.resolved = true
      alert.resolvedAt = new Date()

      // Send resolution notification
      await this.sendAlertResolution(rule, alert)

      // Remove from active alerts after a delay
      setTimeout(() => {
        this.activeAlerts.delete(alertKey)
      }, 5 * 60 * 1000) // Keep for 5 minutes for reference

      console.log(`✅ Alert resolved: ${rule.name}`)
    }
  }

  private async sendAlert(rule: AlertRule, alert: AlertEvent): Promise<void> {
    const message = `🚨 **${rule.name}** triggered\n\nValue: ${alert.value}\nThreshold: ${rule.threshold}\nSeverity: ${rule.severity}\nTime: ${alert.triggeredAt.toISOString()}`

    for (const channel of rule.channels) {
      switch (channel) {
        case 'slack':
          await this.sendSlackAlert(message, rule)
          break
        case 'email':
          await this.sendEmailAlert(message, rule)
          break
        case 'webhook':
          await this.sendWebhookAlert(message, rule)
          break
        case 'pagerduty':
          await this.sendPagerDutyAlert(message, rule)
          break
      }
    }
  }

  private async sendSlackAlert(message: string, rule: AlertRule): Promise<void> {
    // Integration with Slack webhook
    const payload = {
      text: message,
      username: 'API Monitor',
      icon_emoji: ':warning:',
      attachments: [{
        color: this.getSeverityColor(rule.severity),
        fields: [
          { title: 'Rule', value: rule.name, short: true },
          { title: 'Severity', value: rule.severity, short: true },
          { title: 'Threshold', value: rule.threshold.toString(), short: true }
        ]
      }]
    }

    // Send to Slack webhook URL
    console.log('Sending Slack alert:', payload)
  }

  private async sendEmailAlert(message: string, rule: AlertRule): Promise<void> {
    // Integration with email service (SendGrid, etc.)
    const emailPayload = {
      to: 'alerts@yourcompany.com',
      subject: `🚨 API Alert: ${rule.name}`,
      html: message.replace(/\n/g, '<br>')
    }

    console.log('Sending email alert:', emailPayload)
  }

  private async sendWebhookAlert(message: string, rule: AlertRule): Promise<void> {
    // Send to external webhook
    const webhookPayload = {
      alert: rule.name,
      severity: rule.severity,
      message,
      timestamp: new Date().toISOString()
    }

    console.log('Sending webhook alert:', webhookPayload)
  }

  private async sendPagerDutyAlert(message: string, rule: AlertRule): Promise<void> {
    // Integration with PagerDuty
    const pagerdutyPayload = {
      routing_key: process.env.PAGERDUTY_ROUTING_KEY,
      event_action: 'trigger',
      payload: {
        summary: `API Alert: ${rule.name}`,
        source: 'API Monitoring Service',
        severity: rule.severity,
        component: 'api',
        group: 'monitoring',
        class: 'api alert',
        custom_details: { message, threshold: rule.threshold }
      }
    }

    console.log('Sending PagerDuty alert:', pagerdutyPayload)
  }

  private getSeverityColor(severity: string): string {
    switch (severity) {
      case 'critical': return 'danger'
      case 'high': return 'warning'
      case 'medium': return 'good'
      default: return '#439FE0'
    }
  }

  private async storeMetricsForAnalysis(metrics: APIMetrics[]): Promise<void> {
    // Store in time-series database for historical analysis
    // Implementation depends on your chosen database (InfluxDB, TimescaleDB, etc.)
    console.log(`Storing ${metrics.length} metrics for analysis`)
  }

  private initializeDefaultRules(): void {
    const defaultRules: AlertRule[] = [
      {
        id: 'high_error_rate',
        name: 'High Error Rate',
        condition: 'error_rate',
        threshold: 5, // 5% error rate
        duration: 300, // 5 minutes
        severity: 'high',
        channels: ['slack', 'email'],
        enabled: true
      },
      {
        id: 'slow_response_time',
        name: 'Slow Response Time',
        condition: 'p95_response_time',
        threshold: 2000, // 2 seconds
        duration: 300, // 5 minutes
        severity: 'medium',
        channels: ['slack'],
        enabled: true
      },
      {
        id: 'high_traffic',
        name: 'Unusual Traffic Spike',
        condition: 'request_rate',
        threshold: 1000, // 1000 requests per batch
        duration: 60, // 1 minute
        severity: 'medium',
        channels: ['slack'],
        enabled: true
      }
    ]

    defaultRules.forEach(rule => {
      this.alertRules.set(rule.id, rule)
    })
  }

  private startMetricsProcessing(): void {
    // Process metrics every 10 seconds
    setInterval(() => {
      this.processMetricsBuffer()
    }, 10 * 1000)
  }

  // Public API for managing alert rules
  async addAlertRule(rule: AlertRule): Promise<void> {
    this.alertRules.set(rule.id, rule)
    console.log(`Alert rule added: ${rule.name}`)
  }

  async updateAlertRule(ruleId: string, updates: Partial<AlertRule>): Promise<void> {
    const rule = this.alertRules.get(ruleId)
    if (rule) {
      Object.assign(rule, updates)
      console.log(`Alert rule updated: ${rule.name}`)
    }
  }

  async removeAlertRule(ruleId: string): Promise<void> {
    this.alertRules.delete(ruleId)
    console.log(`Alert rule removed: ${ruleId}`)
  }

  getActiveAlerts(): AlertEvent[] {
    return Array.from(this.activeAlerts.values())
  }

  getAlertRules(): AlertRule[] {
    return Array.from(this.alertRules.values())
  }
}

// Usage example
const monitoringService = new APIMonitoringService(metricsClient)

// Add custom alert rule
await monitoringService.addAlertRule({
  id: 'custom_endpoint_errors',
  name: 'Custom Endpoint High Errors',
  condition: 'error_rate',
  threshold: 10,
  duration: 180,
  severity: 'high',
  channels: ['slack', 'pagerduty'],
  enabled: true
})

// Express.js application with monitoring
const app = express()

// Add monitoring middleware
app.use('/api', monitoringService.createMiddleware())

// Health check endpoint
app.get('/health', (req, res) => {
  const activeAlerts = monitoringService.getActiveAlerts()
  const criticalAlerts = activeAlerts.filter(a => a.ruleId.includes('critical'))

  res.json({
    status: criticalAlerts.length > 0 ? 'unhealthy' : 'healthy',
    activeAlerts: activeAlerts.length,
    criticalAlerts: criticalAlerts.length,
    uptime: process.uptime(),
    timestamp: new Date().toISOString()
  })
})

console.log('API monitoring service initialized')

Anomaly Detection with Machine Learning


// ML-powered anomaly detection for API monitoring
interface AnomalyDetectionModel {
  id: string
  name: string
  algorithm: 'isolation_forest' | 'one_class_svm' | 'lstm' | 'prophet'
  features: string[]
  trainingData?: number[][]
  model?: any
  thresholds: {
    sensitivity: number // 0-1
    minAnomalyScore: number // 0-1
  }
  status: 'training' | 'active' | 'inactive'
}

interface AnomalyResult {
  isAnomaly: boolean
  anomalyScore: number // 0-1
  confidence: number
  explanation: string[]
  similarHistoricalEvents?: number[]
  recommendedActions: string[]
}

class APIAnomalyDetector {
  private models: Map<string, AnomalyDetectionModel> = new Map()
  private featureExtractor: FeatureExtractor
  private metricsHistory: Map<string, APIMetrics[]> = new Map()

  constructor() {
    this.featureExtractor = new FeatureExtractor()
    this.initializeDefaultModels()
  }

  async detectAnomalies(endpoint: string, currentMetrics: APIMetrics[]): Promise<AnomalyResult[]> {
    const results: AnomalyResult[] = []

    for (const model of this.models.values()) {
      if (model.status !== 'active') continue

      try {
        const features = await this.extractFeatures(endpoint, currentMetrics, model.features)
        const anomalyResult = await this.predictAnomaly(model, features)

        if (anomalyResult.isAnomaly) {
          results.push(anomalyResult)
        }
      } catch (error) {
        console.error(`Anomaly detection failed for model ${model.name}:`, error)
      }
    }

    return results
  }

  private async extractFeatures(endpoint: string, metrics: APIMetrics[], features: string[]): Promise<number[]> {
    const extractedFeatures: number[] = []

    for (const feature of features) {
      switch (feature) {
        case 'request_rate':
          extractedFeatures.push(metrics.length)
          break

        case 'error_rate':
          const errorCount = metrics.filter(m => m.statusCode >= 400).length
          extractedFeatures.push(metrics.length > 0 ? errorCount / metrics.length : 0)
          break

        case 'avg_response_time':
          extractedFeatures.push(
            metrics.length > 0
              ? metrics.reduce((sum, m) => sum + m.responseTime, 0) / metrics.length
              : 0
          )
          break

        case 'response_time_variance':
          if (metrics.length > 1) {
            const mean = metrics.reduce((sum, m) => sum + m.responseTime, 0) / metrics.length
            const variance = metrics.reduce((sum, m) => sum + Math.pow(m.responseTime - mean, 2), 0) / metrics.length
            extractedFeatures.push(Math.sqrt(variance))
          } else {
            extractedFeatures.push(0)
          }
          break

        case 'unique_clients':
          extractedFeatures.push(new Set(metrics.map(m => m.clientIP)).size)
          break

        case 'geographic_dispersion':
          extractedFeatures.push(this.calculateGeographicDispersion(metrics))
          break

        case 'time_of_day':
          extractedFeatures.push(new Date().getHours() / 24)
          break

        case 'day_of_week':
          extractedFeatures.push(new Date().getDay() / 7)
          break

        default:
          extractedFeatures.push(0) // Unknown feature
      }
    }

    return extractedFeatures
  }

  private calculateGeographicDispersion(metrics: APIMetrics[]): number {
    // Simplified geographic dispersion calculation
    const countries = new Set(metrics.map(m => {
      // In production, resolve IP to country
      return 'US' // Placeholder
    }))

    return countries.size / metrics.length
  }

  private async predictAnomaly(model: AnomalyDetectionModel, features: number[]): Promise<AnomalyResult> {
    switch (model.algorithm) {
      case 'isolation_forest':
        return this.isolationForestPrediction(model, features)

      case 'one_class_svm':
        return this.oneClassSVMPrediction(model, features)

      case 'lstm':
        return this.lstmPrediction(model, features)

      case 'prophet':
        return this.prophetPrediction(model, features)

      default:
        throw new Error(`Unsupported algorithm: ${model.algorithm}`)
    }
  }

  private async isolationForestPrediction(model: AnomalyDetectionModel, features: number[]): Promise<AnomalyResult> {
    // Simplified Isolation Forest implementation
    // In production, use proper ML libraries like scikit-learn or TensorFlow.js

    if (!model.model) {
      // Initialize model with training data
      model.model = await this.trainIsolationForest(model)
    }

    // Calculate anomaly score (simplified)
    const anomalyScore = this.calculateIsolationForestScore(features, model)

    return {
      isAnomaly: anomalyScore > model.thresholds.minAnomalyScore,
      anomalyScore,
      confidence: 0.8,
      explanation: [`Isolation Forest detected anomaly score: ${anomalyScore.toFixed(3)}`],
      recommendedActions: anomalyScore > 0.8
        ? ['Investigate unusual traffic pattern', 'Check for potential DDoS attack']
        : ['Monitor for developing patterns']
    }
  }

  private async oneClassSVMPrediction(model: AnomalyDetectionModel, features: number[]): Promise<AnomalyResult> {
    // Simplified One-Class SVM implementation
    const distance = this.calculateDistanceToCenter(features, model)

    return {
      isAnomaly: distance > model.thresholds.minAnomalyScore,
      anomalyScore: Math.min(1, distance),
      confidence: 0.75,
      explanation: [`One-Class SVM distance: ${distance.toFixed(3)}`],
      recommendedActions: distance > 0.8
        ? ['Review API access patterns', 'Check for unauthorized usage']
        : ['Continue normal monitoring']
    }
  }

  private async lstmPrediction(model: AnomalyDetectionModel, features: number[]): Promise<AnomalyResult> {
    // LSTM-based time series anomaly detection
    const prediction = await this.lstmPredict(features, model)

    return {
      isAnomaly: prediction.anomalyScore > model.thresholds.minAnomalyScore,
      anomalyScore: prediction.anomalyScore,
      confidence: prediction.confidence,
      explanation: prediction.explanation,
      similarHistoricalEvents: prediction.similarEvents,
      recommendedActions: prediction.actions
    }
  }

  private async prophetPrediction(model: AnomalyDetectionModel, features: number[]): Promise<AnomalyResult> {
    // Facebook Prophet for time series forecasting
    const forecast = await this.prophetForecast(features, model)

    return {
      isAnomaly: forecast.isAnomaly,
      anomalyScore: forecast.deviation,
      confidence: 0.9,
      explanation: [`Prophet forecast deviation: ${forecast.deviation.toFixed(2)}%`],
      similarHistoricalEvents: forecast.historicalMatches,
      recommendedActions: forecast.actions
    }
  }

  private calculateIsolationForestScore(features: number[], model: AnomalyDetectionModel): number {
    // Simplified anomaly score calculation
    // In production, use proper Isolation Forest algorithm

    // Calculate feature deviations from normal patterns
    let totalDeviation = 0

    // Compare current features with expected patterns
    const expectedFeatures = [100, 0.05, 200, 50, 20, 0.1, 0.5, 0.7] // Example expected values

    features.forEach((feature, index) => {
      const expected = expectedFeatures[index] || 0
      const deviation = Math.abs(feature - expected) / (expected + 1)
      totalDeviation += deviation
    })

    return Math.min(1, totalDeviation / features.length)
  }

  private calculateDistanceToCenter(features: number[], model: AnomalyDetectionModel): number {
    // Simplified distance calculation for One-Class SVM
    if (!model.model?.center) return 0.5

    let distance = 0
    features.forEach((feature, index) => {
      distance += Math.pow(feature - model.model.center[index], 2)
    })

    return Math.sqrt(distance) / features.length
  }

  private async trainIsolationForest(model: AnomalyDetectionModel): Promise<any> {
    // In production, train model with historical data
    return {
      center: [100, 0.05, 200, 50, 20, 0.1, 0.5, 0.7], // Example center
      trained: true
    }
  }

  private async lstmPredict(features: number[], model: AnomalyDetectionModel): Promise<any> {
    // Simplified LSTM prediction
    return {
      anomalyScore: 0.3,
      confidence: 0.8,
      explanation: ['LSTM model detected normal pattern'],
      similarEvents: [],
      actions: ['Continue normal monitoring']
    }
  }

  private async prophetForecast(features: number[], model: AnomalyDetectionModel): Promise<any> {
    // Simplified Prophet forecast
    const expected = features.reduce((sum, f) => sum + f, 0) / features.length
    const actual = features.reduce((sum, f) => sum + f, 0) / features.length
    const deviation = Math.abs(actual - expected) / expected

    return {
      isAnomaly: deviation > 0.3,
      deviation,
      historicalMatches: [],
      actions: deviation > 0.3
        ? ['Investigate unusual pattern', 'Check for external factors']
        : ['Pattern within normal range']
    }
  }

  private initializeDefaultModels(): void {
    const defaultModels: AnomalyDetectionModel[] = [
      {
        id: 'traffic_anomaly',
        name: 'Traffic Volume Anomaly',
        algorithm: 'isolation_forest',
        features: ['request_rate', 'error_rate', 'time_of_day', 'day_of_week'],
        thresholds: { sensitivity: 0.7, minAnomalyScore: 0.6 },
        status: 'active'
      },
      {
        id: 'performance_anomaly',
        name: 'Performance Anomaly',
        algorithm: 'lstm',
        features: ['avg_response_time', 'response_time_variance', 'request_rate'],
        thresholds: { sensitivity: 0.8, minAnomalyScore: 0.7 },
        status: 'active'
      },
      {
        id: 'geographic_anomaly',
        name: 'Geographic Anomaly',
        algorithm: 'one_class_svm',
        features: ['geographic_dispersion', 'unique_clients', 'request_rate'],
        thresholds: { sensitivity: 0.6, minAnomalyScore: 0.5 },
        status: 'active'
      }
    ]

    defaultModels.forEach(model => {
      this.models.set(model.id, model)
    })
  }

  async trainModel(modelId: string, trainingData: APIMetrics[]): Promise<void> {
    const model = this.models.get(modelId)
    if (!model) throw new Error(`Model ${modelId} not found`)

    model.status = 'training'

    try {
      // Extract features from training data
      const features = []
      for (const metrics of trainingData) {
        const endpointFeatures = await this.extractFeatures('all', [metrics], model.features)
        features.push(endpointFeatures)
      }

      // Train the model based on algorithm
      switch (model.algorithm) {
        case 'isolation_forest':
          model.model = await this.trainIsolationForestModel(features)
          break
        case 'one_class_svm':
          model.model = await this.trainOneClassSVMModel(features)
          break
        case 'lstm':
          model.model = await this.trainLSTMModel(features)
          break
        case 'prophet':
          model.model = await this.trainProphetModel(features)
          break
      }

      model.trainingData = features
      model.status = 'active'

      console.log(`Model ${model.name} trained successfully`)

    } catch (error) {
      console.error(`Model training failed for ${model.name}:`, error)
      model.status = 'inactive'
    }
  }

  private async trainIsolationForestModel(features: number[][]): Promise<any> {
    // In production, use proper ML training
    return {
      trees: 100,
      trained: true,
      featureCount: features[0]?.length || 0
    }
  }

  private async trainOneClassSVMModel(features: number[][]): Promise<any> {
    // Calculate center and radius for One-Class SVM
    const center = features[0]?.map((_, colIndex) =>
      features.reduce((sum, row) => sum + row[colIndex], 0) / features.length
    ) || []

    return {
      center,
      radius: 1.0,
      trained: true
    }
  }

  private async trainLSTMModel(features: number[][]): Promise<any> {
    // In production, train LSTM neural network
    return {
      layers: 3,
      units: 64,
      trained: true
    }
  }

  private async trainProphetModel(features: number[][]): Promise<any> {
    // In production, train Facebook Prophet model
    return {
      trained: true,
      changepoints: []
    }
  }
}

// Integration with monitoring service
class IntegratedMonitoringService {
  private apiMonitor: APIMonitoringService
  private anomalyDetector: APIAnomalyDetector

  constructor(metricsClient: any) {
    this.apiMonitor = new APIMonitoringService(metricsClient)
    this.anomalyDetector = new APIAnomalyDetector()
  }

  async processAPIMetrics(metrics: APIMetrics[]): Promise<void> {
    // Standard metrics processing
    await this.apiMonitor.processMetricsBuffer()

    // Anomaly detection
    const anomalies = await this.anomalyDetector.detectAnomalies('all', metrics)

    // Create alerts for detected anomalies
    for (const anomaly of anomalies) {
      if (anomaly.isAnomaly) {
        await this.createAnomalyAlert(anomaly)
      }
    }
  }

  private async createAnomalyAlert(anomaly: AnomalyResult): Promise<void> {
    const alertRule: AlertRule = {
      id: `anomaly_${Date.now()}`,
      name: 'ML Anomaly Detected',
      condition: 'anomaly_score',
      threshold: anomaly.anomalyScore,
      duration: 60,
      severity: anomaly.anomalyScore > 0.8 ? 'critical' : 'high',
      channels: ['slack', 'email'],
      enabled: true
    }

    await this.apiMonitor.addAlertRule(alertRule)

    console.log(`🚨 ML Anomaly Alert: Score ${anomaly.anomalyScore.toFixed(3)}`)
  }
}

// Usage example
const integratedMonitor = new IntegratedMonitoringService(metricsClient)

// Enhanced metrics collection with anomaly detection
const enhancedMiddleware = (req: any, res: any, next: any) => {
  const originalSend = res.send
  const startTime = Date.now()

  res.send = function(data: any) {
    const metrics: APIMetrics = {
      endpoint: req.route?.path || req.path,
      method: req.method,
      statusCode: res.statusCode,
      responseTime: Date.now() - startTime,
      requestSize: JSON.stringify(req.body || {}).length,
      responseSize: data.length,
      timestamp: Date.now(),
      clientIP: req.ip,
      userAgent: req.get('User-Agent') || '',
      tags: { version: '2.0', environment: 'production' }
    }

    // Process metrics asynchronously
    setImmediate(async () => {
      try {
        await integratedMonitor.processAPIMetrics([metrics])
      } catch (error) {
        console.error('Enhanced monitoring error:', error)
      }
    })

    return originalSend.call(this, data)
  }

  next()
}

app.use('/api/v2', enhancedMiddleware)

console.log('Enhanced API monitoring with ML anomaly detection initialized')

Security Threat Landscape


Key Considerations


Technical Requirements

  • Scalable architecture design
  • Performance optimization strategies
  • Error handling and recovery
  • Security and compliance measures

Business Impact

  • User experience enhancement
  • Operational efficiency gains
  • Cost optimization opportunities
  • Risk mitigation strategies

Protection Mechanisms


Successful implementation requires understanding the technical landscape and choosing appropriate strategies.


Implementation Approaches


Modern Solutions

  • Cloud-native architectures
  • Microservices integration
  • Real-time processing capabilities
  • Automated scaling mechanisms

API Monitoring and Alerting Architecture

API Monitoring and Alerting Architecture


Implementation Strategies {#implementation-strategies}


Deploy comprehensive monitoring across all API layers.


class ComprehensiveAPIMonitoring {
  private metricsCollector: APIMetricsCollector
  private alertEngine: AlertEngine
  
  constructor() {
    this.metricsCollector = new APIMetricsCollector()
    this.alertEngine = new AlertEngine()
  }
  
  async initialize(): Promise<void> {
    // Set up alert rules
    this.alertEngine.addRule({
      id: 'high_error_rate',
      name: 'High Error Rate',
      condition: 'error_rate > threshold',
      threshold: 5, // 5%
      duration: 300, // 5 minutes
      severity: 'high',
      channels: ['email', 'slack', 'pagerduty'],
      enabled: true
    })
    
    this.alertEngine.addRule({
      id: 'slow_response',
      name: 'Slow Response Time',
      condition: 'p95_latency > threshold',
      threshold: 1000, // 1 second
      duration: 600,
      severity: 'medium',
      channels: ['slack'],
      enabled: true
    })
    
    // Start collecting metrics
    this.metricsCollector.start()
  }
}

Monitoring and Detection {#monitoring-and-detection}


Real-time detection of anomalies and threats.


Key Monitoring Areas:

  • Error rate spikes
  • Latency degradation
  • Traffic anomalies
  • Authentication failures
  • Rate limit violations

Incident Response Planning {#incident-response-planning}


Structured response to monitoring alerts.


interface IncidentResponse {
  severity: 'low' | 'medium' | 'high' | 'critical'
  actions: string[]
  escalation: string[]
  sla: number // minutes
}

const RESPONSE_PLAYBOOKS: Record<string, IncidentResponse> = {
  'high_error_rate': {
    severity: 'high',
    actions: ['Check application logs', 'Verify database connectivity', 'Review recent deployments'],
    escalation: ['Engineering team', 'On-call engineer'],
    sla: 15
  },
  'ddos_attack': {
    severity: 'critical',
    actions: ['Enable DDoS protection', 'Activate rate limiting', 'Block attack sources'],
    escalation: ['Security team', 'Infrastructure team', 'Management'],
    sla: 5
  }
}

Compliance and Best Practices {#compliance-and-best-practices}


Follow industry standards and regulatory requirements.


Best Practices:

  • Retain logs for audit requirements (typically 90-365 days)
  • Encrypt sensitive data in logs
  • Implement access controls for monitoring dashboards
  • Regular review and tuning of alert thresholds
  • Document incident response procedures

Conclusion {#conclusion}


Effective API monitoring and alerting requires collecting comprehensive metrics, defining intelligent alert rules, implementing automated responses, and maintaining structured incident response procedures. Success depends on real-time detection, appropriate escalation, and continuous improvement of monitoring strategies.


Key success factors include tracking both performance and security metrics, using dynamic thresholds to reduce false positives, automating common incident responses, and maintaining detailed runbooks for complex scenarios.


Monitor your APIs comprehensively with our monitoring solutions, designed to detect threats and performance issues in real-time with intelligent alerting and automated response capabilities.

Tags:api-monitoringalerting-systemsthreat-detectionperformance-monitoring